UT to JUMPING RUN CREEK STREAM & WETLAND RESTORATION MONITORING REPORT (YEAR 4 OF 5) Cumberland County, North Carolina EEP Project Number 92345 Monitoring Contract Number D09085S

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: FINAL Construction Completed: 2010 Data Collected: 2013 Submission Date: November 2013

Prepared by:

Stantec Consulting Services Inc. 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

Table of Contents

1.0	Executive Summary / P	roject Abstract	. 1			
2.0	.0 Methodology					
2.1	Morphologic Para	neters and Channel Stability	.3			
2.1.	1 Dimension		.3			
2.1.	2 Pattern and Profile		. 3			
2.1.	3 Substrate		. 3			
2.2	Vegetation		. 3			
2.3	Hydrology		.4			
2.3.	1 Streams		.4			
2.3.	2 Wetlands		.4			
3.0	References		. 5			
4.0	Appendices		.7			
	Appendix A Project	t Vicinity Map and Background Tables				
	Figure 1	– Vicinity Map and Directions				
	Table 1a.b.	 Project Restoration Components 				
	Table 2	 Project Activity and Reporting History 				
	Table 3	– Project Contacts				
	Table 4	– Project Attribute				
	Appendix B Visual	Assessment Data				
	Figure 2	– Current Condition Plan View (4 Sheets)				
	Table 5	 Visual Stream Morphology Stability Assessment 				
	Table 6	– Vegetation Condition Assessment				
	Form	– Headwater Stream Visual Assessment Form				
	Photos	– Stream Stations (B1-B13)				
	Photos	– Vegetation Plots (B14-B40)				
	Appendix C Vegeta	tion Plot Data				
	Table 7	 Vegetation Plot Mitigation Success Summary 				
	Table 8	– CVS Vegetation Metadata				
	Table 9	 – CVS Stem Count Total and Planted by Plot and Species 				
	Appendix D Stream	a Survey Data				
	Figures 3a-j	 Cross-Sections with Annual Overlays 				
	Figure 4	 Longitudinal Profiles with Annual Overlays 				
	Table 10a,b.	– Baseline – Stream Data Summary				
	Table 11a.	 Monitoring – Cross-section Morphology Data 				
	Table 11b.	 Monitoring – Stream Reach Morphology Data 				
	Appendix E Hydro	logic Data				
	Table 12	- Verification of Bankfull Events				
	Figure 5	– Monthly Rainfall Data				
	Figures 6a-p	 Precipitation and Water Level Plots 				
	Table 13	 Wetland Hydrology Criteria Attainment 				

The overall goal of the UT to Jumping Run Creek Restoration Project was to restore a Coastal Plain headwater stream and wetlands, a Coastal Plain Small Stream Swamp, and nonriparian wetlands. The objectives of the project were to restore wetland hydrology to small stream swamp wetlands, restore stream stability and improve aquatic habitats, restore historic flow paths and flooding processes, improve floodplain functionality, establish native vegetation within the permanent conservation easement, and investigate the ecological benefits of installing larger containerized trees in select smaller designated areas.

A beaver dam was removed by APHIS prior to a site visit on June 26, 2013. The dam was located along the upstream section (STA ~84+00) of the enhancement reach UT1C just inside of the forested area. The beaver dam had reestablished at the time of the stream survey on October 24, 2013. Stantec staff partially removed the dam which lowered water levels enough to perform the geomorphic survey. NCEEP was notified of the beaver activity. During 2013 a bankfull event was recorded at the upstream crest gauge (CG1) along reach UT1B on June 26, 2013. This is the first bankfull event recorded at the site. There likely was a bankfull event at the lower crest gauge (CG2), but the event was not recorded because of backwater caused by the beaver impoundment. Reach UT1A has shown visual evidence of water accessing the floodplain from the braided channel throughout Monitoring Year 4.

The Monitoring Year 4 (MY4) stem counts within each of the vegetative monitoring plots are included in Tables 7 and 9 in Appendix C. Both planted and total stem counts are included in Table 9. Eight of the plots have over 280 planted stems per acre (the interim success criteria for MY4) while four of the plots have less than 280 planted stems per acre. When volunteers are included in the stem count, all twelve plots exceed 280 total stems per acre. All five of the random transects monitored had over 280 total stems per acre. All five of the random transects monitored had over 280 total stems per acre. A few areas of cattails (*Typha latifolia*) were noted last year, especially in the depressions left by the old channel on the left bank. This area has grown in extent and is marked on the map as a minor vegetation problem area. This area will continue to be monitored to ensure there is no further encroachment on the planted vegetation. Minor areas of *Murdannia keisak* were observed in the stream channel along the downstream portion of UT1B and also the upstream portion of UT1C. Currently, these areas do not pose a threat to native vegetation establishment or stream stability, but they will continue to be monitored during future field visits to document any changes.

The upstream braided reach (UT1A) is stable and appears to be functioning as designed. There are signs that water is flowing through the multiple braids and collecting in the shallow pool areas. Additionally, fish and amphibians were observed in all three reaches of the stream restoration. The single thread restoration reach (UT1B) was observed to be in generally stable condition. Over the approximately 3600 linear feet of channel restoration, the channel's profile and cross-section has only adjusted minimally from baseline conditions. Two small areas of aggradation reported in 2012, at Station 52+50 and Station 55+50, have begun to scour slightly and are transporting sediment. The *Typha latifolia* was still present in these areas, but has not migrated upstream or downstream relative to what was observed in 2012. Random isolated areas of beaver damage to livestakes exist from STA 65+00 to 82+00 along both banks of the stream. The livestakes were well established, and the root stock should allow regeneration without the need for replanting. These areas will be carefully monitored during future field visits to document any

changes. Controlling beaver activity will be essential in allowing these plants to regenerate. The enhancement reach UT1C appears to be stable, with bank pin surveys showing no aggradation or degradation. The above average rainfall recorded from April – July, coupled with the beaver activity, exposed the stream and surrounding floodplain to higher flow conditions that the site had not dealt with before. Overall the stream is visually stable and did an excellent job withstanding the above normal rainfall events and beaver activity. It should be noted that even after the beaver dam was partially removed the water surface survey was still influenced by the backwater (as seen in the longitudinal profile) and limited the number of geomorphic measurements.

Seventeen of the 19 groundwater monitoring wells onsite met the success criteria. Two wells, GW 4A and GW 6B, did not meet the success criteria. The water table measured within 12 inches of the ground surface at GW 6B during the growing season, but the longest duration lasted 4 days. Well GW 4A had to be replaced, and data needs to be downloaded from the malfunctioning well. However, based on data from nearby well GW 4 it is likely that well GW 4A will meet the success criteria. The reference well located in the wetland adjacent to the restoration site met the success criteria, and measured a water table within 12 inches of the growing season. Monthly precipitation totals for 2013 fell below the 30th percentile during the growing season in March, August, September, October, and November. During the months of April, May, June, and July the precipitation measured above the 70th percentile.

Summary information, data, and statistics related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0Methodology

Channel stability, vegetation survival, and viability of wetland function were monitored on the project site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success. The Monitoring Year 4 stream survey was completed using survey grade GPS on October 21, 2013. The vegetation monitoring was conducted on September 16, 2013.

2.1 MORPHOLOGIC PARAMETERS AND CHANNEL STABILITY

2.1.1 Dimension

Reaches UT1A and UT1C involved restoration techniques to restore historic flow patterns and flooding functions. Monitoring efforts for reaches UT1A and UT1C focus on visual documentation of stability. Dimensional characteristics obtained from cross-sectional surveying of 10 permanent cross-sections on UT1B were compared to baseline conditions. All monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. Natural variability is expected, however the system should not experience trends toward excessive increasing bank erosion, channel degradation, or channel aggradation.

2.1.2 Pattern and Profile

The entire longitudinal profile of reach UT1B was surveyed (3,661 lf). Stationing from the as-built survey was used. The longitudinal profiles should show that the bedform features are remaining stable. The pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools.

2.1.3 Substrate

Since the streams throughout the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, as per NCEEP guidance, bed material analyses will not be undertaken for this project.

2.2 VEGETATION

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation in September of 2013. Twelve $100m^2$ plots have been established throughout the project site. In each plot, four plot corners have been permanently located with conduit or rebar. Additionally, five random transect plots (2m x 50m (100m²)) were monitored for surviving species count. The location of the transect plots were selected at random, but stratified to be spread across the different planting zones. These plots are aimed at providing a more thorough account of the vegetation condition across the site outside the permanent vegetation plots.

As per the as-built and baseline monitoring report, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success

criteria will be the survival of 260 5-year old planted trees per acre at the end of the year 5 monitoring period. Interim measures of vegetation planting success will be the survival of at least 320 planted trees per acre at the end of the 3-year monitoring period and 280 planted trees per acre at the end of the 4-year monitoring period. As planted versus volunteer stems cannot be differentiated for the random transect plots, the stem counts for the random transects include both planted and volunteer woody stems.

2.3 HYDROLOGY

2.3.1 Streams

Two crest gauges are used to monitor bankfull events along reach UT1B. One crest gauge has been installed onsite following construction and is located just downstream from cross-section 2. The second crest gauge was installed during the winter of 2012, and is located downstream of the first crest gauge between cross-sections 7 and 8. Each visit to the site includes documentation of the highest stage for the monitoring interval and a reset of the device. Other indications of bankfull flow including the presence of wrack lines, sediment, or flooding are recorded and documented photographically. Refer to Figure 2 in Appendix B for the location of the crest gauges. The headwater stream reach (Reach UT1A) is visually assessed during each monitoring visit to evaluate indicators that the braided channel is exhibiting flow. A visual assessment form was created for this purpose by NCEEP and is included in Appendix B.

2.3.2 Wetlands

Fifteen groundwater monitoring gauges have been installed across the project area to document the hydrologic conditions of the site. Refer to Figure 2 in Appendix B for the location of the groundwater monitoring gauges. Eleven gauges have been installed in the riparian areas and four have been installed in the non-riparian areas of the site. Groundwater gauges will be downloaded on at least a bi-monthly basis during the growing season. A reference well is located in the existing wetlands onsite in the northeast corner of the property and is depicted on Figure 2 in Appendix B. The success criteria for the hydrologic monitoring in the wetlands is for the site to be saturated within 12 inches of the soil surface consecutively for at least 6% of the growing season in the riparian wetlands, and 9% of the growing season in the non-riparian wetlands.

Six additional automated groundwater monitoring gauges were installed by NCEEP, to investigate the hydrology of the non-riparian and riparian wetlands associated with Reach UT1A (Design headwater system). Initially, two wells were installed during the summer of 2012, one of the wells (GW6A) was placed northwest of groundwater well 6 and the other well (GW6B) was placed northeast of groundwater well 6. These additional wells were installed to investigate the lack of hydrologic success exhibited in groundwater well 6. An additional two wells were installed during the initial assessment in March 2013, one well (GW6C) was placed immediately west of groundwater well 6 to further investigate the lack of hydrologic success in groundwater well 6. The second well (GW4A) was placed just southeast of groundwater well 4 to investigate the lack of hydrologic success exhibited in groundwater well 4 to further investigate the lack of hydrological success exhibited in groundwater well 4. In November 2013, NCEEP installed two more wells, one well (GW4B) was placed in the non-riparian area southwest of groundwater well 4 to further investigate the lack of hydrological success exhibited in groundwater well 4. The second well (GW1A) was installed northwest of groundwater well 2 to ensure the riparian wetlands along the upper section of reach UT1A are meeting hydrological success. The additional wells are located within the riparian and non-riparian areas of the site shown on Figure 2 in Appendix B.

3.0References

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)

NCEEP. 2010. Procedural Guidance and Content Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.3, January 15, 2010.

NCEEP. 2008. Mitigation Plan Document – Format Data Requirements, and Content Guidelines. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 2.0, March 27, 2008.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley, 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, North Carolina.

United States Army Corps of Engineers – Wilmington District, North Carolina Division of Water Quality, United States Environmental Protection Agency – Region IV, Natural Resources Conservation Service, North Carolina Wildlife Resources Commission. 2003. Stream Mitigation Guidelines.

4.0Appendices

- Appendix A Project Vicinity Map and Background Tables
- Appendix B Visual Assessment Data
- Appendix C Vegetation Plot Data
- Appendix D Stream Survey Data
- Appendix E Hydrologic Data

Appendix A. Project Vicinity Map and Background Tables

- Figure 1
- Vicinity Map and DirectionsProject Restoration Components Table 1a.,b.
- Project Activity and Reporting History
 Project Contacts
 Project Attribute Table 2
- Table 3
- Table 4

6,000

0

1,500

3,000

Ecosystem

9,000

Figure 1. Vicinity Map

UT to Jumping Run Creek Stream and Wetland Restoration Project EEP #: 92345 Cumberland County, North Carolina

Table 1a. Project Components										
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements ¹	Comment	
UTIA	9,026 lf	R	CP Headwater	3,657*	10+00 to 47+29	1:1	3,657		Restoration consists of filling the channelized portions of stream and restoring valley topography. The system will be allowed to form on its own, either as a single or braided channel headwater stream within the valley (DA stream type).	
UT1B		R	PI	3,661	47+29 to 82+19	1:1	3,661		Restoration follows a Rosgen Priority Level I approach. A new meandering channel was constructed across the abandoned floodplain. The old stream channel and drainange ditches were filled.	
UTIC	1,935 lf	Е	EI	1,935	82+19 to 101+54	1.5:1	1,290		Stream enhancement occurred in the area of existing forest on the eastern side of the project. Flows from the restoration reaches were routed into the existing channel that currently flows through this wooded area, with minimal disturbance to the existing vegetation. The existing channel is relatively stable, and restoring the historic stream flow would enhance the functions of the stream reach.	
Riparian Wetland Restoration - field areas along UT1A and UT1B	n/a	R		67.7**	~10+00 to 82+39	1:1	67.7		Restoration of wetland hydrology to drained areas of hydric soil. Drainage ditches were filled, microtopography reintroduced, planting of native wetland vegetation, and overbank flooding regimes restored.	
Riparian Wetland Enhancement - along UT1a and UT1B (existing jurisdictional wetland pockets)	2.6 ac	Е		2.6***	~16+00 to 60+00	2:1	1.3		Existing jurisdictional wetlands within the farm fields enhanced by raising the local water table, restoring an overbank flooding regime, and planting of native wetland vegetation.	
Non-riparian Wetland Restoration	n/a	R		13.2	~24+00 to 91+00	1:1	13.2		Existing drained hydric soil areas within the farm fields restored by raising the local water table and planting of native wetland vegetation.	

*Footage is based on valley length for this braided system

**Acreage excludes 7.1 acres within 100 feet of Reach UT1A

***Acreage excludes 0.1 acres within 100 feet of Reach UT1A

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond;

FS = Filter Strip; Grassed Swale = S; LS = Level Spreader; NI = Natural Infiltration Area, O = Other

CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Table 1b. Component Summations									
UT Jumping Run Creek Restoration Project/EEP Project No. 92345									
				Non-					
Restoration	Stream	Ripa	arian	Ripar	Upland	Buffer			
Level	(lf)	Wetland (Ac)		(Ac)	(Ac)	(Ac)	BMP		
			Non-						
		Riverine	Riverine						
Restoration	7318	67.7		13.2					
Enhancement		2.6							
Enhancement I	1935								
Enhancement II									
Creation									
Preservation					125.9				
HQ Preservation									
Totals (Feet/Acres)	9253	70.3		13.2					
MU Totals	8608	69.0		13.2					

Non-Applicable

Table 2. Project Activity and Reporting History						
UT Jumping Run Creek Restoration Project/EEP Project No. 92345						
Elapsed Time Since Grading Complete:	3 year 6 months					
Elapsed Time Since Planting Complete:	3 year 5 months					
Number of Reporting Years ¹ :	4					
	Data Collection	Completion or				
Activity or Deliverable	Complete	Delivery				
Mitigation Plan	Nov 2007	July 2008				
Final Design – Construction Plans	n/a	March 2009				
Construction	n/a	April 2010				
Seeding	n/a	March 2010				
Planting	n/a	April 2010				
As-built (Year 0 Monitoring – baseline)	May 2010	Dec 2010				
Year 1 Monitoring	Sept 2010	Dec 2010				
Year 2 Monitoring	Oct 2011	Nov 2011				
Supplemental Planting	n/a	Winter 2011/2012				
Year 3 Monitoring	Oct 2012	Nov 2012				
Year 4 Monitoring	Oct 2013	Nov 2013				
Year 5 Monitoring	n/a	n/a				

1 = Equals the number of reports or data points produced excluding the baseline

Table 3. Project Contacts Table							
UT Jumping Run Creek Restoration Project/EEP Project No. 92345							
Designer	Michael Baker Engineering, Inc.						
	8000 Regency Pkwy, Ste 200, Cary, NC 27518						
Primary project design POC	Kayne Van Stell (919)463-5488						
Construction Contractor	Backwater Environmental						
	P.O. Box 1654, Pittsboro, NC 27312						
Construction contractor POC	Wes Newell (919) 523-4375						
Survey Contractor	Turner Land Surveying, PLLC						
	3201 Glenridge Drive, Rlaiegh, NC 27604						
Survey contractor POC	L Turner (919) 875-1378						
Planting Contractor	Carolina Silvics, Inc.						
	Indian Trail Rd, Endenton, NC 27932						
Planting contractor POC	Mary-Margaret McKinney (252) 482-8491						
Seeding Contractor	Unknown						
	Unknown						
Contractor point of contact	Unknown						
Seed Mix Sources	Unknown						
	Unknown						
Nursery Stock Suppliers	ArborGen, Coastal Plain, Native Roots, Superior Trees, NCDFR						
Monitoring Performers	Stantec Consulting Services, Inc.						
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606						
Stream Monitoring POC	Tim Taylor (980)297-7669						
Vegetation Monitoring POC	Amber Coleman (919)865-7399						
Wetland Monitoring POC Alex Baldwin (919)865-7583							

Table	Table 4. Project Attribute Table							
UT Jumping Run Creel	k Restoratio	on Project /	EEP Proje	et No. 92345				
Project County Cumberland								
Physiographic Region Coastal Plain								
Ecoregion	Sandhills							
Project River Basin	Cape Fear							
USGS HUC for Project (14 digit)	0303000409	0010						
NCDWQ Sub-basin for Project	03-06-14							
Within extent of EEP Watershed Plan?	No							
WRC Hab Class (Warm, Cool, Cold)	Warm							
% of project easement fenced or demarcated	100%							
Beaver activity observed during design phase?	Yes							
Restorat	ion Compor	nent Attribu	te Table					
				RW	RW	NRW		
	UT1A	UT1B	UT1C	Restoration	Enhancement	Restoration		
Drainage area		1.2 sq mi		N/A	N/A	N/A		
Stream order	1	1	1	N/A	N/A	N/A		
Restored length (feet)	3,657	3,661	1,935	N/A	N/A	N/A		
Perennial or Intermittent	I	Р	Р	N/A	N/A	N/A		
Watershed type (Rural, Urban, Developing etc.)	Rural	Rural	Rural	N/A	N/A	N/A		
Watershed LULC Distribution (e.g.)					•			
Residential	25% N/A N/A N							
Ag-Livestock		45%		N/A	N/A	N/A		
Forested		30%		N/A	N/A	N/A		
Watershed impervious cover (%)		<5%		N/A	N/A	N/A		
NCDWQ AU/Index number	N/A	N/A	N/A	N/A	N/A	N/A		
NCDWQ classification	С	С	С	N/A	N/A	N/A		
303d listed?	No	No	No	N/A	N/A	N/A		
Upstream of a 303d listed segment?	Yes	Yes	Yes	N/A	N/A	N/A		
Reasons for 303d listing or stressor	or DO, FC, metals, pH N/A N/A					N/A		
Total acreage of easement	ent 225.3							
Total vegetated acreage within the easement	ent 225.3							
Total planted acreage as part of the restoration	on 153.8							
Rosgen classification of pre-existing	F5	F5	F5	N/A	N/A	N/A		
Rosgen classification of As-built	DA	С	E/C/DA	N/A	N/A	N/A		
Valley type	X	X	Х	N/A	N/A	N/A		

0.0011

_

_

N/A

N/A

No

Deloss

+1-1.0ft

3-35%

0.24

5

0.003

-

_

N/A

N/A

No

Deloss

+1-1.0ft

3-35%

0.24

5

N/A

N/A

N/A

Palustrine

N/A

No

Deloss

+1-1.0ft

3-35%

0.24

5

N/A

N/A

N/A

Palustrine

N/A

No

Deloss

+1-1.0ft

3-35%

0.24

5

N/A

N/A

N/A

Palustrine

N/A

No

Tarboro

>6ft

2-12%

0.1

5

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown RW = Riparian wetland, NRW = Non-riparian wetland

-

-

_

N/A

N/A

No

Deloss

+1-1.0ft

3-35%

0.24

5

Valley slope

Series

Clay%

K

Т

Valley side slope range (e.g. 2-3.%)

Valley toe slope range (e.g. 2-3.%)

Species of concern, endangered etc.? (Y/N)

Dominant soil series and characteristics

Cowardin classification

Depth (to water table)

Trout waters designation

Appendix B. Visual Assessment

Current Condition Plan View (4 Sheets)
Visual Stream Morphology Stability Assessment
Vegetation Condition Assessment
Headwater Stream Visual Assessment Form
Stream Stations (B1-B13)
Vegetation Plots (B14-B42)

			30+00 30+00 30+00	CO-OP CO-OP	VP6		00+00 00+00 00+00 00+00 00+00	VPTT	00+00 500 VP12	80+00 0015X	82+00	000+06		
		Contraction of the second seco	A COLUMN	No Contraction of the second sec			000			B		Cross-section Pins XS1 Left XS1 Right XS2 Left	Latitude Lou 35.2045879 - 35.2044247 - 35.2047629 -	C ngitude 78.9700414 78.9700961 78.9698204
20	C	E Ma	anchester Rd							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		XS2 Right XS3 Left	35.2046638 - 35.2053090 - 35.2053090	78.9697239 78.9685716
Veg Plot Origin	Latitude	Longitude	Sound			Groundwat	er Wells Latitude	Longitude	Groundwater W	ells Latitude	Longitude	XS3 Right	35.2051896 -	78.9685478
VP1	35.1983256	-78.9780612		\sim		(GW1	35.1983115	-78.9789674	GW7	35.2008944	-78.9708841	XS4 Lett XS4 Right	35.2057990 -	78.9676272
VP2	35.2008313	-78.9755219	Random Transect Points	Latitude	Longitude	GW1A	35.1991790	-78.9770850	GW8	35.2044667	-78.9695811	XS5 Left	35.2063946 -	78.9668611
VP3	35.1998666	-78.9750247	Transect 1a	35.2051770	-78.9697525	_GW2	35.1984951	-78.9763074	GW9	35.2053361	-78.9694047	XS5 Right	35.2065211 -	78.9668687
VP4	35.1988482	-78.9744203	Transect 1b	35.2049222	-78.9700794	GW3	35.2008676	-78.9749707	GW10	35.2041840	-78.9666052	XS6 Left	35.2069405 -	78.9663949
VP5	35.2022236	-78.9724278	Transect 2a	35.2049968	-78.9651603	GW4	35.2000073	-78.9730221	GW11	35.2070446	-78.9671993	XS6 Right	35.2067882 -	78.9664084
VP6	35.2027209	-78.9706866	Transect 2b	35.2048542	-78.9656854	GW4A	35.1999580	-78.9729660	GW12	35.2068865	-78.9658770	XS7 Left XS7 Right	35.2073635 -	78.9658688
VP7	35.2045840	-78.9702747	Transect 3a	35.2070727	-78.9669297	GW4B	35.1983820	-78.9748180	GW13	35.2056013	-78.9645140	XS8 Left	35.2080339 -	78.9648516
	35.2053440	-78.9690800	Transect 3b	35.2068407	-78.9673240	GW5	35.2033857	-78.9728203	GVV14	35.2085816	-78.9638132	XS8 Right	35.2079072 -	78.9648177
	35.2037778	-78.9662153	Transect 4a	35.1989003		GW6	35.2023919	-78.9722031	GVV15	35.2088867	-78.9625647	XS9 Left	35.2082806 -	78.9641982
	35.2065955	-78.9008830	Transect 40	35.1992051	-78.9740276	GW6A	35.2023050	-78.9726540	Crost gouge 1	25 2040025	-78.9595070	XS9 Right	35.2082400 -	78.9640472
	35.2000703	-78.9640048	Transact 5b	35 2020486	-78.9721009	GW6C	35,2027570	-78.9714720	Crest gauge 7	35.2049029	-78.9656550	XS10 Left	35.2089302 -	78.9628761
	35.2002429	-78.9040048		33.2020400			33.2023940	-18.9725590	Clest gauge 2	33,2073010	-10.9090950	XS10 Right	35.2088049 -	78.9628976
Figure 2. Cur Stream	Trent Conditi UT to Jumping F and Wetland Re EEP #: 92 berland County, November	ion Plan Vie Run Creek estoration Projec 345 North Carolina	ew (MY4) + ▲ ⇔	Precipitation Crest gauge Groundwate Reference w Vegetation F	i gage er wells (GW 1-1 vell Plots (VP 1-12)	5)	Random transe Cross-sections Stream centerlin Design headwa	cts (Transects 1 (XS 1-10) ne (UT1B) ter system (UT ² ement (UT1C)	-5) Pr	oposed wetland f Non-riparian Riparian wetla Enhancement	eatures and wetland undary	0	500 1,000	0 eet
												Ecosystem	🕖 Star	itec

- Stream Enhancement (UT1C)

- Stream Enhancement (UT1C)

- Beaver dam (2013)

Table 5 Reach ID

Visual Stream Morphology Stability Assessment

Assessed Length (If)

UT1b 3300

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation	
1. Bed	1. Vertical Stability	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%				
	(Riffle and Run units)	2. <u>Degradation</u> - Evidence of downcutting			0	0	100%				
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	32	32			100%				
	3. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>></u> 1.6)	32	32			100%				
	Condition	 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	32	32			100%				
	4 Thelwar Decision	1. Thalweg centering at upstream of meander bend (Run)	32	32			100%				
	4. I naiweg Position	2. Thalweg centering at downstream of meander (Glide)	32	32			100%				
					·		-				
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%	
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%	
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%	
				Totals	0	0	100%	0	0	100%	
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	75	75			100%				
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	75	75			100%				
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	75	75			100%				
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	75	75			100%				
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	75	75			100%				

	Table 6. Vegetation Condition As	ssessment				
	UT Jumping Run Creek Restoration Project /	EEP Project	t No. 92345			
Planted acreage	145					
Vagatation Cotogory	Definitions	Mapping	CCPV Deviation	Number of	Combined	% of Planted
vegetation Category	Very limited cover of both woody and herbecover	Threshold	CCr v Depicuon	rorygons	Acreage	Acreage
1. Bare Areas (previously mowed areas)	material	0.1 acres	None	0	0	0.0%
	Woody stem densities below target levels based					
2. Low Stem Density Areas	on MY3, 4, or 5 stem count criteria	0.1 acres	None	0	0	0.0%
			Total	0	0	0.0%
	Areas with woody stems of a size class that are					
3. Areas of Poor Growth Rates or Vigor	obviously small given the monitoring year	0.25 acres	None	0	0	0.0%
		-	Total	0	0	0.0%
Easement acreage	225.3		-	-		-
						% of
		Mapping		Number of	Combined	Easement
Vegetation Category	Definitions	Threshold	CCPV Depiction	Polygons	Acreage	Acreage
4. Invasive areas of concern	Typha latifolia	1000 SF	Yellow hatching	1	0.79	0.4%
5. Easement encroachment areas		none	None	0	0	0.0%

Headwater Stream Visual Assessment Form

Project Name: UTJRC	Date: 9/18/2013
Observation Team: Alex Baldwin & Liz	Robeson
Recent Weather: No rain in the past week Station Last rain event a/1/13 ~0.5"	on: ~ 17+00

Indicators of Flow (check if present today, and photodocument)

- \Box Water flowing downstream;
- \Box A natural line impressed on the bank;
- \Box Shelving;
- □ Changes in soil characteristics (explain below);
- □ Destruction of terrestrial vegetation;
- Presence of litter and debris;
- Wracking;
- □ Vegetation matted down, bent or absent;
- \Box Sediment sorting;
- Leaf litter disturbed or washed away;
- \Box Scour;
- □ Deposition;
- \Box Bed and bank formation;
- Water staining;
- Change in plant community.

Additional notes:

Photo: Plolooi7

Stream Station Photos

Photo B1 – (Photo Station 1) Cross-section 1 looking downstream at Station 48+81 (10/24/2013 Year 4)

Photo B2 – (Photo Station 2) Cross-section 2 looking downstream at Station 50+30 (10/24/2013 Year 4)

Photo B3 – (Photo Station 3) Cross-section 3 looking downstream at Station 54+98 (10/24/2013 Year 4)

Photo B4 – (Photo Station S4) Cross-section 4 looking downstream at Station 59+09 (10/24/2013 Year 4)

Photo B5 – (Photo Station S5) Cross-section 5 looking downstream at Station 62+87 (10/24/2013 Year 4)

Photo B6 – (Photo Station S6) Cross-section 6 looking downstream at Station 65+44 (10/24/2013 Year 4)

Photo B7 – (Photo Station S7) Cross-section 7 looking downstream at Station 68+24 (10/24/2013 Year 4)

Photo B8 – (Photo Station S8) Cross-section 8 looking downstream at Station 72+84 (10/24/2013 Year 4)

Photo B9 – (Photo Station S9) Cross-section 9 looking downstream at Station 75+30 (10/24/2013 Year 4)

Photo B10 – (Photo Station S10) Cross-section 10 looking downstream at Station 80+45 (10/24/2013 Year 4)

Photo B11 – (Photo Station S11) – Stream channel looking downstream at upper road crossing (10/24/2013 Year 4)

Photo B12 – (Photo Station S12) Stream channel looking upstream at upper road crossing (10/24/2013 Year 4)

Photo B13 – Evidence of flow observed in headwater system UT1A (10/24/2013 Year 4)

Vegetation Plot Photos

Photo B14 – (Photo Station V1) Veg Plot 1 looking west (9/18/2013 Year 4)

Photo B15 – (Photo Station V2) Veg Plot 1 looking southwest (9/18/2013 Year 4)

Photo B16 - (Photo Station V3) Veg Plot 2 looking south (9/18/2013 Year 4)

Photo B17 – (Photo Station V4) Veg Plot 2 looking southeast (9/18/2013 Year 4)

Photo B18 – (Photo Station V5) Veg Plot 3 looking southeast (9/18/2013 Year 4)

Photo B19 – (Photo Station V6) Veg Plot 3 looking east (9/18/2013 Year 4)

Photo B20 – (Photo Station V7) Veg Plot 4 looking northwest (9/18/2013 Year 4)

Photo B21 – (Photo Station V8) Veg Plot 4 looking west (9/18/2013 Year 4)

Photo B22 – (Photo Station V9) Veg plot 5 looking southwest (9/18/2013 Year 4)

Photo B23 – (Photo Station V10) Veg plot 5 looking south (9/18/2013 Year 4)

Photo B24 – (Photo Station V11) Veg plot 6 looking northeast (9/18/2013 Year 4)

Photo B25 – (Photo Station V12) Veg plot 6 looking north (9/18/2013 Year 4)

Photo B26 – (Photo Station V13) Veg plot 7 looking north (9/18/2013 Year 4)

Photo B27 – (Photo Station V14) Veg plot 7 looking northwest (9/18/2013 Year 4)

Photo B28 – (Photo Station V15) Veg plot 8 looking northwest (9/18/2013 Year 4)

Photo B29 – (Photo Station V16) Veg plot 8 looking west (9/18/2013 Year 4)

Photo B30 – (Photo Station V17) Veg plot 9 looking south (9/18/2013 Year 4)

Photo B31 – (Photo Station V18) Veg Plot 9 looking southeast (9/18/2013 Year 4)

Photo B32 – (Photo Station V19) Veg plot 10 looking northeast (9/18/2013 Year 4)

Photo B33 – (Photo Station V20) Veg plot 10 looking north (9/18/2013 Year 4)

Photo B34 – (Photo Station V21) Veg plot 11 looking southwest (9/18/2013 Year 4)

Photo B35 – (Photo Station V22) Veg plot 11 looking south (9/18/2013 Year 4)

Photo B36 – (Photo Station V23) Veg plot 12 looking southwest (9/18/2013 Year 4)

Photo B37 – (Photo Station V24) Veg plot 12 looking south (9/18/2013 Year 4)

Photo B38 – (Photo Station RT1) Random transect 1 looking southwest (9/18/2013 Year 4)

Photo B39 – (Photo Station RT2) Random transect 2 looking west (9/18/2013 Year 4)

Photo B40 – (Photo Station RT3) Random transect 3 looking southwest (9/18/2013 Year 4)

Photo B41 – (Photo Station RT4) Random transect 4 looking northeast (9/18/2013 Year 4)

Photo B42 – (Photo Station RT5) Random transect 5 looking east (9/18/2013 Year 4)

This page intentionally left blank for two-sided printing.

Appendix C. Vegetation Plot Data

Table 7 Table 8	 Vegetation Plot Mitigation Success Summary CVS Vegetation Metadata
Table 9 a	– CVS Stem Count Total and Planted by Plot and Species
Table 9b	- Stem Count Total and Planted by Plot and Species for Random Transects

This page intentionally left blank for two-sided printing.

	Table 7. UT to Jumping Run Creek (#92345)								
	Year 4 (18-Sep-2013)								
	Vegetation Plot Summary Information								
	Riparian Buffer	Stream/ Wetland					Unknown Growth		
Plot #	Stems ¹	Stems ²	Live Stakes	Invasives	Volunteers ³	Total ⁴	Form		
0001	n/a	10	0	0	204	214	0		
0002	n/a	9	0	0	411	420	0		
0003	n/a	12	0	0	86	98	0		
0004	n/a	7	0	0	28	35	0		
0005	n/a	12	0	0	26	38	0		
0006	n/a	6	0	0	20	26	0		
0007	n/a	4	0	0	15	19	0		
0008	n/a	3	0	0	23	26	0		
0009	n/a	4	0	0	29	33	0		
0010	n/a	8	0	0	22	30	0		
0011	n/a	7	0	0	45	52	0		
0012	n/a	10	0	0	61	71	0		

We	Wetland/Stream Vegetation Totals									
	(pe	r acre)								
	Stream/ Wetland			Success Criteria						
Plot #	Stems ²	Volunteers ³	Total ⁴	Met?						
0001	405	8256	8660	Yes						
0002	364	16633	16997	Yes						
0003	486	3480	3966	Yes						
0004	283	1133	1416	Yes, barely						
0005	486	1052	1538	Yes						
0006	243	809	1052	No						
0007	162	607	769	No						
0008	121	931	1052	No						
0009	162	1174	1335	No						
0010	324	890	1214	Yes						
0011	283	1821	2104	Yes, barely						
0012	405	2469	2873	Yes						
			0-04							

Stem Class	Characteristics	Color for Density
¹ Buffer	Native planted hardwood trees. Does NOT	
Stems	include shrubs. No pines. No vines.	Exceeds requirements by 10%
² Stream/	Native planted woody stems. Includes	
Wetland	shrubs, does NOT include live stakes. No	
Stems	vines	Exceeds requirements, but by less than 10%
	Native woody stems. Not planted. No	
³ Volunteers	vines.	Fails to meet requirements, by less than 10%
	Planted + volunteer native woody stems.	
	Includes live stakes. Excl. exotics. Excl.	
⁴ Total	vines.	Fails to meet requirements by more than 10%

	Table 8. CVS Vegetation Plot Metadata									
UT to	o Jumping Run Creek Restoration - EEP#92345									
Report Prepared By	Alex Baldwin									
Date Prepared	9/27/2013 11:37									
database name	Stantec_UTJRC2012_cvs-eep-entrytool-v2.3.1.mdb									
database location	U:\175613003\UT_Jumping_Run\project\site_data\monitoring\vegetation									
computer name	BALDWINA-SP1									
file size	38735872									
DESCRIPTION OF WORKSHEETS IN	THIS DOCUMENT									
	Description of database file, the report worksheets, and a summary of									
Metadata	project(s) and project data.									
	Each project is listed with its PLANTED stems per acre, for each year. This									
Proj, planted	excludes live stakes.									
	Each project is listed with its TOTAL stems per acre, for each year. This									
Proj, total stems	includes live stakes, all planted stems, and all natural/volunteer stems.									
	List of plots surveyed with location and summary data (live stems, dead									
Plots	stems, missing, etc.).									
Vigor	Frequency distribution of vigor classes for stems for all plots.									
Vigor by Spp	Frequency distribution of vigor classes listed by species.									
	List of most frequent damage classes with number of occurrences and									
Damage	percent of total stems impacted by each.									
Damage by Spp	Damage values tallied by type for each species.									
Damage by Plot	Damage values tallied by type for each plot.									
	A matrix of the count of PLANTED living stems of each species for each									
Planted Stems by Plot and Spp	plot; dead and missing stems are excluded.									
	A matrix of the count of total living stems of each species (planted and									
	natural volunteers combined) for each plot; dead and missing stems are									
ALL Stems by Plot and spp	excluded.									
PROJECT SUMMARY										
Project Code	92345									
project Name	UT to Jumping Run Creek									
Description	stream and wetland restoration									
River Basin	Cape Fear									
length(ft)										
stream-to-edge width (ft)										
area (sq m)										
Required Plots (calculated)										
Sampled Plots	12									

																					Tab	ole 9a - CVS	Stem C	Count To	otal and	Plante	d by Pl	lot and Spec	ies																		
					EEP Project Code 92345. Project Name: UT to Jumping Run Creek																																										
																Cu	urrent	Plot Da	ta (MY4	4 2013))																			Annu	al Mer	ans					
		1	E9234	45-01-000)1	E92345-01	-0002	E92345	-02-000	3 E9	2345-02	2-0004	E923	45-02-0	005	E9234	45-02-0	006	E9234	5-02-0	007	E92345-02	2-0008	E92	345-02-0	009	E9234	45-02-0010	E923	345-02-0011	E923	345-02-0	0012	MY4	(2013	3)	MY3	(2012)		MY	2 (2011	1)	MY	1 (2010)	T	MY0	(2010)
Scientific Name	Common Name	Species Type	PnoLS	P-all T	Рі	noLS P-all	т	PnoLS P-	all T	Pno	LS P-all	Т	PnoLS	P-all	т	PnoLS	P-all	г	PnoLS P	-all 1	т р	noLS P-all	Т	PnoLS	S P-all T	r F	PnoLS	P-all T	PnoLS	P-all T	PnoLS	P-all	T P	noLS P-	all T	ГР	noLS P-a	all T	Р	noLSF	-all T	r F	PnoLS F	-all T	Pr	noLS P-	-all T
Acer rubrum	red maple	Tree					18			33													1	l												52			10			8				-	
Aronia arbutifolia	Red Chokeberry	Shrub	1	1	2																													1	1	2	1	1	1	1	1	1	2	2	2	2	2 2
Baccharis	baccharis	Shrub									1				Ĩ									1					1										9			3					
Baccharis halimifolia	eastern baccharis	Shrub			4					1	1				Ĩ								8	3					1							13											
Chamaecyparis thyoides	Atlantic white cedar	r Tree	1	1	1	1 1	1 1	2	2	2																								4	4	4	5	5	5	6	6	6	5	5	5	12	12 12
Diospyros virginiana	common persimmo	n Tree			1		8	1	1	1					2						1													1	1	13			11	1	1	19	4	4	4	5	5 5
Fraxinus pennsylvanica	green ash	Tree						1	1	1			6	6	6									4	4 4	4								11	11	11	11	11	11	11	11	11	11	11	11	11	11 11
Liquidambar styraciflua	sweetgum	Tree			8		29			7		14			1								3	3				1	L							63			30			16					
Liriodendron tulipifera	tuliptree	Tree				1 1	l 1									1	1	1									3	3 3	3					5	5	5	6	6	6	7	7	9	7	7	7	12	12 12
Magnolia virginiana	sweetbay	Tree				3 3	3 3	2	2	2																								5	5	5	5	5	5	6	6	6	9	9	9	12	12 12
Nyssa	tupelo	Tree																											1	1	1 1	1	1	2	2	2	2	2	2								
Nyssa biflora	swamp tupelo	Tree	3	3	3	2 2	2 3	1	1	1	2	2 2	2	2	4				3	3	3	3	3 3	3			1	1 1	L 3	3	3		1	20	20	24	18	18	18	17	17	17	20	20	20	19	19 19
Persea borbonia	redbay	tree																																									1	1	1	1	1 1
Persea palustris	swamp bay	tree																													1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	3	3 3
Pinus palustris	longleaf pine	Tree																																									1	1	1	5	5 5
Pinus taeda	loblolly pine	Tree		1	190		7			38		14			21			20			11		4	1		27		14	1		8		59			413						31					
Platanus occidentalis	American sycamore	Tree																								1										1											
Quercus	oak	Tree									2	2 2																	1	1	1		1	3	3	4	3	3	3	2	2	4	5	5	5	14	14 14
Quercus falcata	southern red oak	Tree	1	1	1	1 1	L 2			1						2	2	2																4	4	6	4	4	5	4	4	4	3	3	3	2	2 2
Quercus lyrata	overcup oak	Tree	4	4	4								1	1	1				1	1	1										2	2	2	8	8	8	9	9	9	7	7	7	7	7	7	4	4 4
Quercus nigra	water oak	Tree				1 1	1 2	2	2	2			1	1	1																1	1	1	5	5	6	3	3	3	1	1	2	1	1	1	1	1 1
Quercus phellos	willow oak	Tree						2	2	2	3	3 3	2	2	2												3	3 3	3 1	1	1 4	4	4	15	15	15	16	16	16	15	15	17	14	14	14	12	12 12
Quercus stellata	post oak	Tree						1	1	1																								1	1	1	1	1	1	1	1	1	1	1	1		
Rhus copallinum	flameleaf sumac	shrub					346			6																1		6	5							359			226			280					
Salix nigra	black willow	Tree																			3		7	7				1	L	3	37					48			35			6					
Smilax	greenbrier																																									12					
Taxodium distichum	bald cypress	Tree														3	3	3									1	1 1	l 1	1	1 1	1	1	6	6	6	6	6	6	7	7	7	7	7	7	7	7 7
Toxicodendron radicans	eastern poison ivy	Vine																																				\perp		\rightarrow		1					
Unknown		Shrub or Tree																																					3			5				1	1 1
		Stem count	10	10 2	214	9 9	9 420	12	12	98	7	7 35	12	12	38	6	6	26	4	4	19	3	3 26	5 4	4 4	33	8	8 30) 7	7 5	52 10	10	71	92	92	1062	91	91	416	87	87	474	100	100 1	100	123	123 123
		size (ares)		1		1			1		1			1			1			1		1			1			1		1		1			12		1	12			12			12			12
		size (ACRES)		0.02		0.02		0	.02		0.02	2		0.02			0.02			0.02		0.02	2		0.02			0.02		0.02		0.02		0	.30		0.	.30			0.30			0.30		0).30
		Species count	5	5	9	6 6	5 11	8	8	14	3	3 5	5	5	8	3	3	4	2	2	5	1	1 6	5 1	1 1	4	4	4 8	3 5	5	7 6	6	9	16	16	23	15	15	22	15	15	24	17	17	17	17	17 17
	9	Stems per ACRE	404.7	404.7 86	660 3	64.2 364.2	2 16997	485.6 4	35.6 39	966 283	.3 283.	3 1416	485.6	485.6	1538	242.8	242.8	1052	161.9	161.9	768.9	121.4 121.4	4 1052	161.9	161.9	1335	323.7	323.7 1214	283.3	283.3 210	404.7	404.7	2873	310.3 31	10.3	3581 3	<mark>06.9</mark> 30	<i>1</i> 6.9	1403 7	293.4	293.4	1599	337.2	337.2 33	57.2 <mark>4</mark> 1	14.8 41	14.8 414.8

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

			Table 9b an	. Stem Co d Species	unt Total : for Rando	and Plante om Transe	d by Plot cts
			UT to J	umping R	un Creek	- EEP Pro	ject No.
				<u> </u>	92345		<u></u>
		Т		Current P	lot Data (N	MY4 2013)
			Random	Kandom	Kandom	Random	Kandom
Scientific Name	Common Name	Species Type	1 ransect	1 ransect 2	1 ransect	1 ransect	1 ransect 5
Pinus taeda	Loblolly Pine	Tree	5	15	4	51	6
Acer rubrum	Red Maple	Tree	3	1	1		
Liquidambar styraciflua	Sweetgum	Tree		1	1	3	
Quercus nigra	Water Oak	Tree	1	1	1	4	1
Taxodium distichum	Bald Cypress	Tree			2		1
Salix nigra	Black Willow	Tree	1		5		
Quercus phellos	Willow Oak	Tree	3				
Magnolia virginiana	Sweetbay	Shrub Tree			1		
Diospyros virginiana	Persimmon	Tree	1		2		
Fraxinus pennsylvanica	Green Ash	Tree		2			5
Quercus falcata	Southern Red Oak	Tree				1	
Quercus lyrata	Overcup Oak	Tree		3	2		6
Nyssa biflora	Blackgum	Tree	7		6	1	2
Rhus copallinum	Swamp Tupelo	Tree	42				
Pinus palustris	Longleaf Pine	Tree		2		4	
Sambucus canadensis	Elderberry	Shrub		1	1		
		Stem Count	63	26	26	64	21
		size (ares)	1	1	1	1	1
		size (ACRES)	0.02	0.02	0.02	0.02	0.02
		Species count	8	8	11	6	6
	St	ems per ACRE	2550.6	1052.6	1052.6	2591.1	850.2

Appendix D. Stream Survey Data

Figures 3a-j	 Cross-Sections with Annual Overlays
Figure 4	- Longitudinal Profiles with Annual Overlays
Table 10a,b.	– Baseline – Stream Data Summary
Table 11a.	- Monitoring - Cross-section Morphology Data
Table 11b.	- Monitoring - Stream Reach Morphology Data

This page intentionally left blank for two-sided printing.

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-1, Riffle, STA 48+81
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

N	IY00	N	IY01	N	1Y02	M	<i>(</i> 03	MY	04		
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation		
22.84	150.99	22.00	150.91	22.25	150.89	22.00	150.98	22.00	150.93		
23.93	150.70	25.31	150.99	24.75	150.99	22.36	150.60	22.10	150.69		
31.43	150.71	37.48	150.55	36.92	150.55	23.96	150.60	25.12	150.78		
41.41	150.57	52.15	150.48	51.60	150.48	27.65	150.82	29.89	150.70		
45.73	150.42	54.23	150.15	53.55	150.15	33.72	150.52	35.29	150.60		
49.10	150.34	56.54	149.53	56.18	149.53	38.73	150.49	39.86	150.54		
51.90	150.48	58.23	149.33	57.65	149.33	42.83	150.52	44.30	150.44		
53.65	150.49	60.16	149.18	59.71	149.18	44.59	150.38	48.00	150.44		
55.09	150.11	61.78	149.32	61.36	149.32	47.90	150.42	51.09	150.49		
56.24	149.81	63.75	149.40	63.14	149.40	51.68	150.46	52.88	150.49		
57.05	149.57	66.11	149.94	65.50	149.94	54.43	150.03	53.97	150.23		
57.45	149.42	67.63	150.46	66.50	150.20	56.21	149.58	55.51	149.77		
57.86	149.26	76.40	150.30	67.20	150.46	56.82	149.63	56.29	149.55		
58.99	149.16	83.42	150.63	75.85	150.43	56.85	149.56	56.41	149.49		
60.10	149.16	83.78	150.69	82.82	150.63	57.15	149.44	57.04	149.33		
61.10	149.20	83.84	150.68	83.35	150.69	58.61	149.22	58.76	149.25		
62.24	149.18			83.40	150.68	60.29	149.09	59.78	149.29		
63.20	149.33			83.46	150.68	61.07	149.25	60.57	149.21		
64.34	149.40					62.20	149.37	62.03	149.35		
65.05	149.60					63.35	149.37	63.62	149.34		
65.61	149.71					64.28	149.58	63.87	149.62		
67.42	150.08					65.48	149.78	65.48	149.83		
68.90	150.42					67.36	150.29	67.57	150.47		
69.34	150.47					68.75	150.50	70.48	150.54		
71.02	150.46					71.74	150.43	74.25	150.32		
75.41	150.30					74.94	150.39	77.13	150.34		

	and they	THE REPORT OF COMPANY AND A DOT OF	EXTRA CONTRACTOR AND	- A THE CALIFORNIA STREET	ALL AND A
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	150.47	150.46	150.48	150.46	150.47
Bankfull Cross-Sectional Area	12.9	13.16	12.52	12.74	12.12
Bankfull Width	15.6	15.35	15.6	16.99	14.61
Flood Prone Area Elevation	151.78	151.74	151.78	151.83	151.73
Flood Prone Width	200	200	200	200	200
Max Depth at Bankfull	1.31	1.28	1.3	1.37	1.26
Mean Depth at Bankfull	0.83	0.79	0.8	0.75	0.83
W/D Ratio	18.73	19.43	19.50	22.65	17.60
Entrenchment Ratio	12.86	13.03	12.82	11.77	13.69
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	C	C	С	C	C

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-2, Pool, STA 50+30
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		MY01		MY02		M	Y03	MY04	
Station	Elevation								
33.17	150.54	35.00	150.75	38.82	150.24	35.00	150.80	35.00	150.75
34.39	150.82	44.07	150.34	46.01	150.40	35.21	150.49	35.02	150.47
34.86	150.48	52.64	150.36	51.94	150.35	37.29	150.48	36.78	150.41
39.92	150.45	54.34	149.99	53.04	150.05	41.47	150.26	38.37	150.38
45.00	150.52	56.45	149.06	54.69	149.86	47.95	150.41	40.81	150.46
48.41	150.60	57.95	148.34	57.80	148.66	51.49	150.51	43.22	150.40
50.80	150.59	59.66	148.48	58.22	148.54	53.82	150.04	45.33	150.50
50.93	150.58	61.28	148.94	58.48	148.59	55.86	149.38	47.93	150.56
52.37	150.39	62.79	149.23	60.25	148.91	56.07	149.40	50.13	150.51
53.59	150.12	64.76	149.36	62.18	149.19	56.36	149.30	52.63	150.40
54.32	150.06	67.19	149.78	65.61	149.59	56.91	148.65	53.97	150.10
55.03	149.60	69.74	150.37	68.21	150.07	57.89	148.24	54.79	149.91
55.37	149.37	75.21	150.37	71.23	150.72	58.66	148.60	55.49	149.62
56.04	149.08	81.48	150.79	73.91	150.55	59.64	148.77	55.98	149.38
56.61	148.66			79.03	150.38	60.96	149.04	56.59	148.96
56.93	148.49			81.09	150.80	63.05	149.30	56.89	148.71
57.99	148.34					63.99	149.41	57.33	148.59
59.16	148.49					66.61	149.79	58.06	148.48
60.19	148.64					68.52	150.20	59.08	148.70
61.79	148.95					69.55	150.44	60.09	148.80
63.15	149.06					70.14	150.55	60.74	148.90
63.76	149.29					72.45	150.66	61.45	149.06
65.43	149.63					73.88	150.60	62.12	149.22
67.39	149.91					76.37	150.46	63.19	149.26
69.34	150.32					78.95	150.39	64.47	149.38
70.67	150.67					80.77	150.46	65.63	149.60

SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	150.58	150.36	150.35	150.51	150.40
Bankfull Cross-Sectional Area	21.57	17.26	15.57	18.60	16.78
Bankfull Width	19.33	17.30	17.56	18.53	16.77
Flood Prone Area Elevation	152.82	152.38	152.16	152.78	152.32
Flood Prone Width	200	200	200	200	200
Max Depth at Bankfull	2.25	2.02	1.81	2.27	1.92
Mean Depth at Bankfull	1.12	1.01	0.89	1.00	1.00
W/D Ratio	17.26	17.13	17.13	18.53	16.77
Entrenchment Ratio	10.35	11.56	11.56	10.79	11.93
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	C	С	С	С	C

X-Section 2, Pool, Station 50+30

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-3, Riffle, STA 54+98
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		MY01		MY02		MY03		MY04	
Station	Elevation								
50.31	149.47	52.13	149.90	54.60	149.43	52.73	149.87	52.73	149.81
52.37	149.88	60.01	149.64	59.86	149.54	52.73	149.59	53.14	149.59
52.54	149.50	67.76	149.78	65.67	149.52	53.57	149.52	55.13	149.58
57.38	149.45	69.63	149.52	69.09	149.68	57.24	149.53	58.42	149.63
60.52	149.61	72.58	148.93	70.98	149.34	62.14	149.65	62.91	149.66
64.53	149.63	74.88	148.61	72.54	148.90	66.69	149.60	65.56	149.77
66.87	149.78	77.71	148.59	73.18	148.74	68.43	149.62	67.56	149.90
68.88	149.75	79.57	148.60	75.08	148.57	70.03	149.44	68.94	149.86
69.74	149.56	81.66	149.15	76.91	148.68	71.64	149.20	70.09	149.69
70.98	149.31	84.67	149.99	78.47	148.65	72.68	149.08	71.24	149.42
72.43	149.07	88.05	149.83	80.57	148.83	72.79	149.00	72.34	149.26
73.48	148.83	94.10	149.85	82.33	149.25	73.55	148.83	73.04	149.06
74.45	148.69	96.38	150.36	84.38	149.75	74.57	148.72	73.87	149.07
75.49	148.65			84.88	149.93	76.07	148.46	74.52	148.80
76.56	148.63			86.24	149.83	77.05	148.47	75.22	148.68
77.68	148.63			90.28	149.89	77.52	148.70	76.61	148.67
78.65	148.63			95.47	149.89	78.54	148.63	77.61	148.66
79.71	148.61			96.33	150.34	79.49	148.74	78.67	148.67
80.16	148.73					80.35	148.87	79.73	148.62
80.81	148.91					81.77	149.11	80.68	148.78
82.01	149.14					83.39	149.42	81.31	148.98
83.76	149.51					84.35	149.63	81.65	149.12
84.84	149.93					85.27	149.93	82.19	149.22
85.99	149.87					88.17	149.85	82.87	149.31
87.04	149.75					91.99	149.87	83.53	149.52
89.46	149.86					94.37	149.82	83.56	149.41

CHANNE THE STREET			
SUMARY DATA	MY00	MY01	MY02
Bankfull Elevation	149.75	149.78	149.68
Bankfull Cross-Sectional Area	11.71	13.91	10.69
Bankfull Width	15.50	16.16	15.00
Flood Prone Area Elevation	150.89	150.97	150.79
Flood Prone Width	200	200	200
Max Depth at Bankfull	1.14	1.19	1.11
Mean Depth at Bankfull	0.76	0.76	0.71
W/D Ratio	20.90	21.26	21.13
Entrenchment Ratio	12.91	12.38	13.33
Bank Height Ratio	1.0	1.0	1.0
Stream Type	С	С	С

and the second se		
02	MY03	MY04
.68	149.62	149.86
69	9.88	12.29
00	15.90	15.86
.79	150.78	151.10
0	200	200
1	1.16	1.24

0.62

25.65

12.58 1.0

С

0.78

20.33

12.61 1.0 C

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-4, Pool, STA 59+09
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		MY01		MY02		MY03		MY04	
Station	Elevation								
35.83	149.76	34.96	149.74	38.12	149.29	35.52	149.72	35.50	149.76
36.19	149.50	51.33	149.49	48.68	149.42	35.62	149.18	35.66	149.44
41.66	149.43	58.28	149.32	57.30	149.29	35.69	149.33	36.68	149.50
47.94	149.53	62.04	148.76	59.53	148.99	37.01	149.31	37.90	149.44
53.48	149.49	65.56	148.10	62.35	148.71	40.89	149.36	39.63	149.48
58.28	149.36	66.97	147.69	65.50	148.24	47.11	149.38	41.47	149.46
60.99	148.95	68.00	147.38	67.46	147.59	51.50	149.32	43.22	149.52
63.04	148.61	69.12	147.08	69.20	147.17	58.10	149.15	46.02	149.51
65.10	148.21	70.02	147.14	70.40	147.29	62.80	148.54	48.55	149.46
67.01	147.55	71.57	147.30	71.12	147.29	64.05	148.42	50.93	149.44
68.95	147.24	72.68	147.60	72.46	147.51	64.30	148.48	53.62	149.43
70.73	147.14	74.11	148.39	73.66	147.85	65.10	148.13	55.91	149.39
71.83	147.18	75.85	149.42	75.13	148.47	66.64	147.62	58.09	149.36
73.50	147.64	84.75	149.67	76.79	149.43	67.95	147.19	59.40	149.11
74.87	148.18	95.04	150.13	77.13	149.42	69.55	146.81	61.05	148.88
75.08	148.39			82.24	149.38	71.74	146.95	62.42	148.76
75.70	148.87			86.84	149.67	73.12	147.30	63.80	148.51
76.63	149.34			88.87	149.77	74.60	148.10	64.67	148.38
77.37	149.34			95.04	149.76	76.43	149.45	65.75	148.05
78.21	149.38			95.30	150.15	79.61	149.49	66.82	147.77
80.92	149.48					83.81	149.51	68.05	147.51
84.67	149.55					88.85	149.71	68.98	147.35
88.81	149.73					90.74	149.52	70.15	147.09
91.55	149.57					93.56	149.71	71.49	147.25
94.93	149.69					95.30	150.13	72.60	147.67
95.51	150.15							73.45	148.03

SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	149.34	149.32	149.29	149.15	149.36
Bankfull Cross-Sectional Area	22.42	20.32	20.78	21.47	20.95
Bankfull Width	18.22	17.38	19.25	17.92	17.99
Flood Prone Area Elevation	151.54	151.56	151.41	151.49	151.63
Flood Prone Width	200	200	200	200	200
Max Depth at Bankfull	2.20	2.24	2.12	2.34	2.27
Mean Depth at Bankfull	1.23	1.17	1.08	1.20	1.16
W/D Ratio	14.81	14.85	17.82	14.93	15.51
Entrenchment Ratio	10.98	11.51	10.39	11.16	11.12
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	C	С	C	С	C

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-5, Riffle, STA 62+87
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		MY01		MY02		MY03		MY04	
Station	Elevation								
44.70	149.16	44.30	149.49	50.03	149.07	44.29	149.48	44.30	149.44
44.93	149.48	54.94	149.19	57.50	148.95	44.66	149.03	44.82	149.14
47.23	149.18	63.66	149.07	62.90	148.96	45.86	148.97	47.72	149.13
53.66	149.17	65.27	148.57	63.66	149.07	47.62	149.07	50.55	149.23
58.24	149.05	66.66	148.05	65.19	148.82	50.09	148.87	52.51	149.07
61.29	148.97	67.60	147.86	66.95	148.05	54.34	149.00	57.59	149.00
63.55	148.92	68.69	147.76	68.05	147.83	57.78	149.02	60.05	148.96
64.46	149.02	69.97	147.73	69.11	147.67	61.49	149.00	61.53	148.92
65.18	148.85	71.23	147.78	71.46	147.63	64.15	148.89	63.11	148.89
66.49	148.30	72.51	147.84	72.41	147.85	65.25	148.54	64.98	148.60
67.17	147.96	73.74	147.97	74.39	147.99	66.22	148.18	66.15	148.29
68.59	147.83	75.02	148.41	74.66	148.28	67.07	148.03	66.85	148.18
69.50	147.86	76.19	149.02	76.99	148.99	67.57	147.79	67.06	147.95
70.23	147.70	82.42	149.10	80.33	148.99	68.92	147.76	67.62	147.81
71.20	147.61	90.40	149.50	85.02	149.26	70.01	147.60	68.54	147.76
72.18	147.78			90.54	149.21	70.68	147.37	69.66	147.84
72.54	147.89			90.68	149.45	71.27	147.75	70.19	147.62
73.50	147.94					72.31	147.86	70.45	147.60
74.43	147.96					72.81	147.86	70.77	147.80
74.91	148.28					73.59	147.96	71.36	147.86
76.61	148.62					73.94	148.01	71.99	147.76
77.27	148.88					74.13	148.18	72.78	147.82
79.38	149.00					74.48	148.41	73.18	147.76
80.42	149.01					75.46	148.39	73.58	148.06
83.37	148.98					76.11	148.65	73.69	148.28
87.22	149.09					76.54	149.04	74.87	148.38

A REAL PROPERTY OF A REAL PROPERTY AND A REAL	CALIFORNIA DE LA CALIFICAL DE LA CALIFIC		AND MERICAN AND ADDRESS OF A DRESS OF A DRESS	The second s	and the second
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	149.02	149.07	148.99	148.89	148.89
Bankfull Cross-Sectional Area	11.69	11.94	11.05	10.25	9.80
Bankfull Width	15.9	15.64	12.84	12.22	14.83
Flood Prone Area Elevation	150.38	150.41	150.35	150.41	150.18
Flood Prone Width	200	200	200	200	200
Max Depth at Bankfull	1.41	1.34	1.36	1.52	1.29
Mean Depth at Bankfull	0.74	0.76	0.86	0.84	0.66
W/D Ratio	21.49	20.58	14.93	14.55	22.47
Entrenchment Ratio	12.58	12.79	15.58	16.37	13.49
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	С	С	С	С	С

UT to Jumping Run Creek, Reach UT1B X-Section 5, Riffle, Station 62+87

tin a	Sec. a L	a
02	IVIY03	IVIY04
.99	148.89	148.89
05	10.25	9.80
84	12.22	14.83
.35	150.41	150.18
0	200	200

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-6, Riffle, STA 65+44
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

M	Y00	M	Y01	MY02		MY03		MY04	
Station	Elevation								
42.43	149.16	42.03	149.10	41.90	149.00	41.93	149.10	41.90	149.09
42.74	148.68	50.83	148.53	50.70	148.50	42.41	148.43	42.21	148.52
45.36	148.68	63.86	148.58	52.78	148.52	49.10	148.55	43.95	148.63
49.90	148.71	65.38	147.99	63.73	148.49	53.48	148.33	46.30	148.58
56.07	148.56	67.20	147.66	65.25	148.21	59.01	148.51	48.58	148.70
61.78	148.52	68.38	147.40	67.07	147.69	62.48	148.35	51.26	148.44
63.85	148.53	69.92	147.38	68.25	147.53	65.11	148.01	54.05	148.48
64.56	148.30	71.52	147.39	68.52	147.48	67.01	147.50	55.72	148.40
65.93	147.95	73.51	147.40	69.79	147.40	67.49	147.44	57.92	148.40
67.33	147.65	75.16	147.44	71.39	147.35	69.44	147.23	60.35	148.60
68.06	147.51	76.31	147.65	73.38	147.43	71.11	147.21	62.49	148.37
69.22	147.46	78.07	148.22	75.03	147.52	71.79	147.29	63.13	148.51
69.80	147.40	79.79	148.56	75.53	147.61	73.43	147.30	63.56	148.55
70.94	147.39	86.78	148.65	76.18	147.68	74.72	147.45	64.72	148.09
72.49	147.41	97.75	149.43	77.94	148.00	75.89	147.57	65.62	147.81
73.80	147.40	97.79	149.44	79.66	148.50	76.18	147.65	66.58	147.79
75.03	147.38			86.65	148.59	76.98	147.82	67.14	147.62
75.98	147.49			96.00	149.40	77.96	148.16	68.08	147.48
76.63	147.62					79.48	148.55	68.83	147.34
77.27	147.76					82.31	148.77	69.62	147.42
78.21	148.12					87.03	148.69	70.70	147.38
79.28	148.40					93.55	149.01	71.19	147.30
80.39	148.61					97.49	149.07	71.88	147.35
82.03	148.73					97.85	149.43	72.62	147.35
84.97	148.72							73.62	147.40
86.87	148.60							74.34	147.31

		Royak a	*		
		the second			The second
A ANGER A					1 Sec
		the all			
AN AN ANALY NA					
The New York House	. ANG		新福祉 日		Con Self
1981年早期11夜。1943~		The Tak	MALLEN M	K. M.C	
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	148.61	148.58	148.49	148.51	148.55
Bankfull Cross-Sectional Area	14.51	13.74	12.05	14.64	13.48
Bankfull Width	16.39	17.17	15.90	20.32	15.38
Flood Prone Area Elevation	149.84	149.78	149.63	149.81	149.80
Flood Prone Width	200.00	200.00	200.00	200.00	200.00
Max Depth at Bankfull	1.23	1.20	1.14	1.30	1.25
Mean Depth at Bankfull	0.89	0.80	0.76	0.72	0.88
W/D Ratio	18.42	21.46	20.92	28.22	17.48
Entrenchment Ratio	12.20	11.65	12.58	9.84	13.00
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0

Stream Type

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-7, Riffle, STA 68+24
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

M	IY00	M	IY01	MY02		MY03		MY04	
Station	Elevation								
110.41	147.98	129.14	148.15	134.46	147.76	130.77	148.20	130.00	148.15
123.54	147.92	134.38	147.77	142.52	148.00	131.03	147.79	130.56	147.85
129.80	148.17	143.99	148.05	147.21	148.09	132.60	147.77	131.73	148.00
129.95	147.80	147.23	148.13	147.46	148.04	137.52	147.90	133.78	147.82
134.50	147.78	150.02	147.60	151.44	147.26	142.89	147.97	136.65	147.89
142.25	147.96	151.39	146.98	152.19	147.08	147.22	148.02	139.68	147.93
145.91	148.09	153.14	146.88	154.85	146.85	148.78	148.00	142.95	148.07
148.49	148.03	154.42	146.86	155.21	146.98	151.19	147.39	145.76	148.14
149.22	147.73	157.05	146.94	156.43	146.92	152.21	147.11	147.98	148.11
150.88	147.25	160.12	147.62	158.46	147.15	152.34	146.95	149.01	147.94
151.62	146.96	163.18	148.17	160.97	147.67	152.75	146.71	150.24	147.67
152.18	146.95	174.81	148.23	162.27	148.06	154.77	146.80	151.01	147.36
153.51	146.95	181.92	148.44	166.94	148.30	155.51	146.94	152.04	147.26
154.78	146.91			172.83	148.33	156.73	146.94	152.41	146.97
156.05	146.90			178.19	148.23	157.80	147.01	153.20	146.96
157.36	146.88			182.42	148.15	158.75	147.16	153.83	146.94
157.76	146.99			182.87	148.46	159.55	147.37	154.79	146.93
158.39	147.04					160.04	147.50	155.77	146.93
159.46	147.39					161.80	147.94	156.65	146.92
161.88	147.97					163.65	148.27	157.75	146.98
163.39	148.20					168.43	148.33	158.58	147.19
167.73	148.19					175.26	148.38	159.52	147.39
178.68	148.05					181.22	148.24	159.78	147.47
181.92	148.43					182.92	148.15	160.49	147.67
						182.93	148.47	161.22	147.83
								161.61	147.94

	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A STATE OF A		Charles and the second
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	148.09	148.13	148.06	148.00	148.11
Bankfull Cross-Sectional Area	11.77	12.18	10.95	10.08	10.97
Bankfull Width	16.87	15.72	14.91	13.36	14.79
Flood Prone Area Elevation	149.30	149.40	149.27	149.29	149.30
Flood Prone Width	200.00	200.00	200.00	200.00	200.00
Max Depth at Bankfull	1.21	1.27	1.21	1.29	1.19
Mean Depth at Bankfull	0.70	0.77	0.73	0.75	0.74
W/D Ratio	24.10	20.42	20.42	17.81	19.99
Entrenchment Ratio	11.86	12.72	13.41	14.97	13.52
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	C	С	С	C	С

UT to Jumping Run Creek, Reach UT1B X-Section 7, Riffle, Station 68+24

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-8, Riffle, STA 72+84
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

N	IY00	N	IY01	MY02		MY03		MY04	
Station	Elevation								
37.56	147.62	36.99	147.58	38.91	147.10	37.83	147.58	37.83	147.55
37.71	147.15	38.83	147.19	47.98	146.92	37.87	147.10	38.12	147.23
39.04	147.14	44.12	147.06	52.49	147.14	41.35	147.11	38.72	147.26
43.00	147.13	50.75	147.17	53.42	146.67	47.05	146.94	39.95	147.24
46.92	146.93	54.21	146.46	55.76	146.08	49.77	147.06	41.56	147.25
50.07	147.13	56.70	145.99	58.31	145.95	52.51	147.14	43.24	147.16
51.69	147.20	59.09	145.83	58.35	146.00	54.70	146.45	44.56	147.09
52.45	147.18	60.88	146.03	59.15	145.92	56.54	146.46	46.30	147.04
52.99	146.81	62.43	146.25	60.83	146.06	57.97	146.20	48.20	147.07
55.04	146.53	63.98	147.04	62.09	146.09	59.14	146.00	49.43	147.13
55.45	146.22	65.64	147.16	64.11	146.67	59.57	146.01	51.47	147.16
55.99	146.12	70.44	147.23	66.02	147.20	60.59	146.09	52.48	147.17
57.33	146.13	79.16	147.43	67.67	147.20	61.86	146.21	53.02	146.95
58.84	146.20	84.76	147.93	73.08	147.32	63.24	146.31	53.73	146.77
59.45	145.94			77.07	147.49	64.52	146.97	54.73	146.60
60.26	146.07			84.17	147.65	65.93	147.31	56.05	146.51
60.77	146.18			85.21	147.95	70.56	147.36	57.29	146.29
61.89	146.04					76.79	147.50	58.26	146.38
62.09	146.21					81.94	147.55	59.03	146.09
63.17	146.19					85.00	147.64	59.37	145.99
63.79	146.68					85.23	147.93	59.92	145.97
65.03	147.11							60.88	146.14
66.76	147.14							61.39	146.20
68.47	147.08							61.93	146.19
72.26	147.29							62.40	146.35
78.25	147.38							63.31	146.23

	- 1.1.2		NOT LEAST AND NOT ANY AND	AND TO A STATE	14. 13: 100
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	147.20	147.17	147.14	147.14	147.17
Bankfull Cross-Sectional Area	10.81	11.37	11.08	9.16	9.50
Bankfull Width	15.10	15.24	13.31	12.71	13.72
Flood Prone Area Elevation	148.46	148.51	148.36	148.28	148.37
Flood Prone Width	200.00	200.00	200.00	200.00	200.00
Max Depth at Bankfull	1.26	1.34	1.22	1.14	1.20
Mean Depth at Bankfull	0.72	0.75	0.83	0.72	0.69
W/D Ratio	20.97	20.32	16.04	17.65	19.88
Entrenchment Ratio	13.25	13.12	15.03	15.74	14.58
Bank Height Ratio	1.000	1.000	1.000	1.0	1.0
Stream Type	С	С	С	С	С

			- 4	mai
		-		
1 5 1				A
Soften frillhå soften	Sector	Lor A		
and the state of				-
		ANT IN COL	A. S.	
THE LOW	and the second			
			ille and	
			A Star	
		A.S.		
Neg X		and the		
S FRANK	and the f	Rear of	Sec. 3	1740

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-9, Pool, STA 75+30
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		N	MY01 MY0		IY02	MY03		MY04	
Station	Elevation								
45.86	147.10	54.66	147.86	54.29	147.85	54.34	147.13	54.30	147.88
54.31	147.84	56.39	147.21	54.35	147.94	54.42	147.12	54.39	147.32
54.32	147.83	59.30	147.27	56.03	147.38	58.09	147.04	55.29	147.31
55.41	147.22	64.36	147.19	58.91	147.28	63.94	147.08	56.64	147.34
59.39	147.13	68.17	146.30	63.31	147.38	66.98	147.03	58.55	147.19
63.00	147.03	70.50	145.18	65.38	147.21	67.71	146.40	60.34	147.26
66.74	146.97	72.44	144.63	66.68	147.20	68.55	146.11	62.58	147.16
67.78	146.53	73.73	144.64	66.98	147.18	69.87	145.63	64.42	147.15
68.50	146.07	76.28	144.71	68.29	146.53	72.12	144.66	66.30	147.13
69.12	145.78	78.01	145.05	69.18	145.88	74.51	144.60	67.25	147.06
69.51	145.47	80.48	145.70	71.69	144.98	75.34	144.88	67.82	146.56
70.56	144.94	83.46	146.67	72.96	144.91	77.61	145.17	68.40	146.33
72.81	144.72	85.82	147.08	75.08	144.77	79.65	145.62	68.71	146.27
74.08	144.70	94.80	147.17	76.49	144.73	82.02	146.30	68.73	146.08
75.57	144.86	102.44	147.73	78.10	145.06	82.88	146.65	69.61	145.77
76.93	144.88			80.59	145.70	84.81	147.13	70.10	145.50
78.23	145.13			82.55	146.41	87.59	147.19	70.69	145.04
80.13	145.71			85.37	147.03	91.72	147.31	72.00	144.87
80.85	145.97			92.90	147.19	97.22	147.20	73.52	144.72
80.94	145.97			99.66	146.88	101.97	147.25	74.67	144.89
83.22	146.56			102.00	147.69	102.00	147.75	76.27	144.85
85.42	147.01							77.63	145.21
86.79	146.95							79.25	145.53
89.91	147.01							80.53	145.90
94.51	147.04							81.75	146.24
99.95	146.99							82.57	146.55

SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	146.97	147.08	147.19	147.03	147.06
Bankfull Cross-Sectional Area	25.96	29.08	29.36	25.48	25.24
Bankfull Width	18.48	20.67	26.07	17.43	17.45
Flood Prone Area Elevation	149.24	149.53	149.55	149.46	149.40
Flood Prone Width	200.00	200.00	200.00	200.00	200.00
Max Depth at Bankfull	2.27	2.45	2.46	2.43	2.34
Mean Depth at Bankfull	1.40	1.41	1.13	1.46	1.45
W/D Ratio	13.20	14.66	23.07	11.94	12.03
Entrenchment Ratio	10.82	9.68	7.67	11.47	11.46
Bank Height Ratio	1.0	1.0	1.0	1.0	1.0
Stream Type	С	С	С	С	С

X-Section 9, Pool, Station 75+30

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-10, Riffle, STA 80+45
Drainage Area(sq. mi.)	1.2
Date	10/24/2013
Field Crew	T. Taylor, A. Baldwin

MY00		MY01		MY02		MY03		MY04	
Station	Elevation								
130.01	146.53	133.23	147.11	133.16	147.16	133.32	147.14	133.30	147.06
132.86	147.07	136.23	147.07	133.27	147.06	133.59	146.47	133.79	146.50
133.28	146.47	140.87	146.20	133.93	146.65	138.70	146.22	136.09	146.40
134.96	146.33	148.97	145.98	138.04	146.34	144.59	146.02	139.30	146.15
139.81	146.04	152.23	145.76	142.36	146.12	149.02	145.88	143.08	146.02
144.59	146.04	152.97	145.35	146.82	146.13	152.37	145.58	145.03	146.13
148.52	145.99	156.19	144.99	149.64	145.88	153.45	145.25	147.88	146.12
150.69	145.93	158.49	144.89	152.18	145.89	155.66	145.11	149.03	145.97
151.61	145.81	161.37	144.80	152.29	145.75	157.93	144.90	149.11	145.98
152.74	145.49	163.33	145.51	153.86	145.38	158.99	145.20	149.88	145.85
153.24	145.45	165.95	145.77	155.60	145.17	159.79	145.29	151.20	145.99
154.14	145.34	170.43	145.94	156.57	145.00	161.10	145.11	152.53	145.67
154.97	145.28	175.46	145.94	158.28	144.79	161.70	145.38	153.14	145.48
156.22	145.05	179.48	146.73	159.24	145.04	162.81	145.60	154.39	145.37
157.37	144.89			161.55	145.14	164.45	145.94	156.23	145.03
158.39	144.94			163.77	145.72	166.17	146.12	157.17	145.01
158.76	145.08			164.82	145.73	169.86	146.12	158.75	145.05
159.62	145.19			168.89	145.70	171.97	146.12	159.91	145.24
160.20	145.14			172.41	146.01	175.48	146.02	161.14	145.25
161.14	145.22			176.22	145.87	177.74	146.26	162.41	145.46
162.05	145.39			179.29	146.68	179.08	146.32	163.36	145.65
163.22	145.64					179.26	146.75	164.82	145.95
165.17	145.87							165.53	145.98
166.62	145.95							166.84	146.09
169.52	145.94							169.26	146.03
172.89	146.13							171.79	146.11

				A REAL PROPERTY AND A REAL	and the second
SUMARY DATA	MY00	MY01	MY02	MY03	MY04
Bankfull Elevation	145.87	145.76	145.73	145.88	145.95
Bankfull Cross-Sectional Area	7.41	8.10	6.04	7.82	7.98
Bankfull Width	14.02	13.61	12.45	15.14	14.99
Flood Prone Area Elevation	146.85	146.72	146.67	146.86	146.89
Flood Prone Width	103.50	41.41	45.35	50.00	50.00
Max Depth at Bankfull	0.98	0.96	0.94	0.98	0.94
Mean Depth at Bankfull	0.53	0.59	0.36	0.52	0.53
W/D Ratio	26.45	23.07	34.58	29.12	28.28
Entrenchment Ratio	7.38	3.04	3.64	3.30	3.34
Bank Height Ratio	1.00	1.00	1.0	1.0	1.0
Stream Type	С	С	С	С	C

			E to Ju	mpipa	Pup (rook St	Table	e 10a.	Base (otland	line St	ream	Data S	Summa	ary ER No.	0224	5 UT	1h (15	00 foo	\+)						
Parameter	Gauge ²	Reg	jional C	urve	Kunc	Pre-E	Existing	g Cond	ition	I Kesu		Refere	ence R	each(es	s) Data	5-01	10 (43	Design) 1		M	onitoring	Baseline	•	
Dimension and Substrate - Piffle Only			111	Eq	Min	Mean	Med	Max	SD2	n	Min	Mean	Med	Max	SD2	n	Min	Med	Max	Min	Mean	Med	Max	SD₅	n
Bankfull Width (ft)			UL	<u> </u>	12 10	15.23	13.01	20.55	3.05	5	IVIIII	wear	Med	IVIAA	50			13./	IVIAA	14.02	15.08	15 75	18/18	1 32	8
Eloodprope Width (ft)	/ 				15.59	18.68	17.51	20.55	3.95	5								100+	-	103 50	187.94	200.00	200.00	34.12	8
Bankfull Mean Depth (ft)	<u></u>				0.54	0.77	0.86	0.94	0.19	5		-						0.9		0.53	0.82	0.75	1 40	0.26	8
¹ Bankfull Max Depth (ft)	,				0.87	1 18	1 17	1 45	0.15	5	<u> </u>	-		<u> </u>	-	-		1.1	-	0.00	1 35	1.25	2.27	0.20	8
Bankfull Cross Sectional Area (ft ²)	,	_			10.97	11.23	11.13	11.80	0.33	5	7.80	51.85	51.85	95.90	-	2		12.0	-	7.41	13.35	11.74	25.96	5.48	8
Width/Depth Ratio	,)				12.47	21.84	15.20	37.78	11.53	5	8.00	11.00	11.00	14.00	-	2		15.0	-	13.20	20.53	20.94	26.45	3.97	8
Entrenchment Ratio)				1.13	1.25	1.29	1.35	0.09	5	4.00	8.50	8.50	13.00	-	2	8.0	10.0	12.0	7.35	12.85	12.53	21.58	4.00	8
¹ Bank Height Ratio)				2.94	4.14	4.29	5.45	0.95	5	1.00	1.15	1.15	1.30	-	2	-	1.0	-	1	1	1	1	0	8
Profile																	•								
Riffle Length (ft))				-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	31.399 49.709 48.08305 78.4581 11.				11.12	32
Riffle Slope (ft/ft))				-	-	-	-	-	-	-	-	-	-	-	-	0.001	0.003	0.005	0.0002	0.4671	0.005	6	1.662	13
Pool Length (ft)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	27.7	59.89	61.4	96	18.34	30
Pool Max depth (ft)					-	-	-	-	- 1	-	-	-	-	-	-	-	-	1.9	-	0.865	1.4959	1.572	2.395	0.391	30
Pool Spacing (ft)					-	-	-	-	-	-	-	-	-	-	-	-	38	61.5	85	79	106.48	104	143	17.09	29
Pattern	-	_	•	-	-		-	•	•	-	-	-	-	-	-	-	-		-	-	-			-	
Channel Beltwidth (ft)					-	-	-	-	-	-	-	-	-	-	-	-	38	79.0	120	40.15	70.42	69.35	96.96	13.68	26.00
Radius of Curvature (ft)					-	-	-	-	-	-	-	-	-	-	-	-	30	40.0	50	32.49	41.47	39.95	55.87	6.35	30.00
Rc:Bankfull width (ft/ft)					-	-	-	-	-	-	1.5	-	2.25	3	-	-	2	2.8	3.5	2.32	2.59	2.54	3.02	-	-
Meander Wavelength (ft)					-	-	-	-	-	-	-	-	-	-	-	-	70	120	170	152.37	179.88	176.05	228.52	23.44	14.00
Meander Width Ratio					-	-	-	-	-	-	2	-	4.15	6.3	-	-	3.5	5.8	8	2.86	4.41	4.40	5.25	-	-
Transport parameters											-						1								
Reach Shear Stress (competency) lb/f	2				<u> </u>		-										<u> </u>	0.03				0.05	6		
Max part size (mm) mobilized at bankful	I						-											-				-			
Stream Power (transport capacity) W/m ²	2						-											0.026				0.69	9		
Additional Reach Parameters											-						-								
Rosgen Classification	ı		1				F	5					E5	/C5				C5c				C50	;		
Bankfull Velocity (fps))						-											0.78				-			
Bankfull Discharge (cfs))						9.	4																	
Valley length (ft)							-							-											
Channel Thalweg length (ft)							65	01						-				3400				347	1		
Sinuosity (ft)							1.()7					1.22	/1.77				1.2				1.2			
Water Surface Slope (Channel) (ft/ft))						0.00	006										0.0016				0.001	24		
BF slope (ft/ft))						-											-				0.001	37		-
³ Bankfull Floodplain Area (acres)							-							-				-							
⁴ % of Reach with Eroding Banks	5	_					-							-											
Channel Stability or Habitat Metric	;	_					-							-											
Biological or Other	ſ						-							-											

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. B	aseli	ne Sti	ream	Data	Sumr	nary	(Subs	strate	, Bed	, Ban	k, and	Hyd	olog	ic Coi	ntainr	nent l	Paran	neter	Distri	butio	ns)							
	UT	t <mark>o Ju</mark> n	nping	g Run	Cree	k Stre	eam a	nd W	etland	d Res	torati	on / E	EP N	o. 923	45 - L	JT1b	(4500	feet)										
Parameter		Pre	e-Exis	sting (Condi	tion			Refe	rence	Read	ch(es)	Data	1				Desig	n					As-bi	uilt/Ba	aselin	е	
		-		-	-	_			T	-	-					-	-	T	T									
¹ Ri% / Ru% / P% / G% / S%	-	0	-	0	0			-	-	-	-	-			-	-	-	-	-			52	-	48	-	-		
¹ SC% / Sa% / G% / C% / B% / Be%	0	33	67	0	0	0		0	100	0	0	0	0															
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.14	0.26	0.5	4.4	7.3	-	30	0.3	0.4	0.5	0.9	1.2	-	-														
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	-	-	-	-	-			-	-	-	-	-										-	-	-	-	-		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	-	-	-	-				I -	-	-	-											-	-	-	-			
-																												-
= Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; di	p = max	pave, dis	p = max :	subpave																								-
= Entrenchment Class - Assign/bin the reach footage into the classes indicated and pro	vide the	percenta	ge of the	total rea	ch footag	e in each	class in t	the table.	This wil	l result fr	om the m	easured o	ross-sec	tions as v	vell as vis	sual estim	nates											
= Assign/bin the reach footage into the classes indicated and provide the percentage of	f the tota	I reach fo	otage in	each clas	ss in the t	able. Thi	is will res	ult from t	he measu	red cros	s-sections	s as well a	as the lor	ngitudinal	profile													
																												-
ootnotes 2,3 - These classes are loosley built around the Rosgen classification and	hazard ra	anking bro	eaks, but	t were ad	justed slig	ghtly to m	ake for e	asier ass	signment	to somev	vhat coars	ser bins b	ased on	visual est	mates in	the field	such tha	t measur	ement of	every seg	gment for	ER woul	d not be i	necessar	у.			-
the intent here is to provide the reader/consumer of design and monitoring information w	with a goo	d genera	I sense c	of the exte	ent of hyd	rologic co	ontainmei	nt in the p	pre-existi	ng and th	ie rehabili	tated stat	es as we	II as com	parisons	to the ref	erence d	istributior	IS.									-

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections. the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provi a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				i abie	e 11a	. Mor	ntori	ng Da	ita - L	Jimen	sion		rpho	logy	Sum	mary	(Dim	ensio	nal I	Parar	meter	s – Cr	'OSS ;	Sectio	ons)										
						Pr	ojec	t Nam	e/Nu	mber	(UT 、	Jump	ing R	lun C	reek) Se	gmer	t/Rea	ach:	UT1k	o (450	0 feet	:)												
		Cr	oss Se	ction '	1 (Riffl	e)			С	ross S	ection	2 (Poo	I)			С	oss Se	ction 3	B (Riffl	le)			С	ross Se	ction 4	l (Poo	I)			С	ross S	ection	5 (Riff	le)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5 N	√lY+
Record elevation (datum) used	150.47	150.46	150.48	150.46	150.47	,		150.58	150.36	150.35	150.51	150.40			149.75	149.78	149.68	149.62	149.86	6		149.34	149.32	149.29	149.15	149.36			149.02	149.07	148.99	148.89	148.89	9	
Bankfull Width (ft)	15.60	15.35	15.60	16.99	14.61			19.33	17.03	17.56	18.53	16.77			15.50	16.16	15.00	15.90	15.86			18.22	17.38	19.25	17.90	17.99			15.90	15.64	12.84	12.22	14.83		
Floodprone Width (ft)	200+	200+	200+	200+	200+			200+	200+	200+	200+	200+			200+	200+	200+	200+	200+			200+	200+	200+	200+	200+			200+	200+	200+	200+	200+		
Bankfull Mean Depth (ft)	0.83	0.79	0.80	0.75	0.83			1.12	1.01	0.89	1.00	1.00			0.76	0.76	0.71	0.62	0.78			1.23	1.17	1.08	1.20	1.16			0.74	0.76	0.86	0.84	0.66		
Bankfull Max Depth (ft)	1.31	1.28	1.30	1.37	1.26			2.25	2.02	1.81	2.27	1.92			1.14	1.19	1.11	1.16	1.24			2.20	2.24	2.12	2.34	2.27			1.41	1.34	1.36	1.52	1.29		
Bankfull Cross Sectional Area (ft ²)	12.90	13.16	12.52	12.74	12.12			21.57	17.26	15.57	18.60	16.78			11.71	13.91	10.69	9.88	12.29			22.42	20.32	20.78	21.47	20.95			11.69	11.94	11.05	10.25	9.80		
Bankfull Width/Depth Ratio	18.73	19.43	19.50	22.65	17.60			17.26	16.86	17.13	18.53	16.77			20.90	21.26	21.13	25.65	20.33			14.81	14.85	17.82	14.92	15.51			21.49	20.58	14.93	14.55	22.47		
Bankfull Entrenchment Ratio	12.86	13.03	12.82	11.77	13.69			10.35	11.74	11.56	10.79	11.93			12.91	12.38	13.33	12.58	12.61			10.98	11.51	10.39	11.17	11.11			21.58	12.79	15.58	16.37	13.49		
Bankfull Bank Height Ratio	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00		
Cross Sectional Area between end pins (ft ²)	16.50	17.00	17.25	17.50				26.30	26.50	26.70					21.70	22.10	21.85					32.10	32.50	33.15					19.00	19.10	18.50				
d50 (mm)																																			
																																		1	
		Cr	oss Se	ction	6 (Riffl	e)			Cı	ross Se	ction	' (Riffl	e)			С	oss Se	ction 8	B (Riffl	le)			Cr	oss Se	ction 9	(Riffle	e)			Cr	oss Se	ction 1	0 (Riff	le)	
Based on fixed baseline bankfull elevation ¹	Base	Cr MY1	oss Se MY2	ection MY3	6 (Riffl MY4	e) MY5	MY+	Base	Cı MY1	MY2	ection 7 MY3	(Riffl MY4	e) MY5	MY+	Base	Cı MY1	oss Se MY2	ction 8 MY3	B (Riffl MY4	le) MY5	MY+	Base	Cr MY1	oss Se MY2	ction 9 MY3	(Riffle MY4	e) MY5	MY+	Base	Cr MY1	oss Se MY2	ction 1 MY3	I 0 (Riff MY4	i e) MY5 M	ЛY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used	Base 148.61	Cr MY1 148.58	oss Se MY2 148.49	Ction (MY3 148.51	6 (Riffl MY4 148.55	e) MY5	MY+	Base 148.09	CI MY1 148.13	MY2	Ection 7 MY3 148.00	(Riffl MY4 148.11	e) MY5	MY+	Base 147.20	Ci MY1 147.17	MY2 147.14	ction 8 MY3 147.14	8 (Riff MY4 147.17	le) MY5	MY+	Base 146.97	Cr MY1 147.08	OSS Se MY2 147.19	ction 9 MY3 147.03	(Riffle MY4 147.06	e) MY5	MY+	Base 145.87	Cr MY1 145.76	OSS Se MY2 145.73	Ction 1 MY3 145.88	MY4 145.95	i e) MY5 N	۷Y+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft)	Base 148.61 16.39	Cr MY1 148.58 17.17	OSS Se MY2 148.49 15.90	MY3 148.51 20.32	6 (Riffl MY4 148.55 15.38	e) MY5	MY+	Base 148.09 16.87	CI MY1 148.13 15.72	MY2 148.06 14.91	Ction 7 MY3 148.00 13.36	(Riffl MY4 148.11 14.79	e) MY5	MY+	Base 147.20 15.10	CI MY1 147.17 15.24	MY2 147.14 13.31	ction 8 MY3 147.14 12.71	8 (Riffl MY4 147.17 13.72	le) MY5 7	MY+	Base 146.97 18.48	Cr MY1 147.08 20.67	MY2 147.19 26.07	ction 9 MY3 147.03 17.43	(Riffle MY4 147.06 17.45	e) MY5	MY+	Base 145.87 14.02	Cr MY1 145.76 13.61	MY2 145.73 12.45	Ction 1 MY3 145.88 15.14	MY4 145.95 14.99	MY5 N	YY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft)	Base 148.61 16.39 200+	Cr MY1 148.58 17.17 200+	MY2 148.49 15.90 200+	MY3 148.51 20.32 200+	6 (Riffl MY4 148.55 15.38 200+	e) MY5	MY+	Base 148.09 16.87 200+	CI MY1 148.13 15.72 200+	MY2 148.06 14.91 200+	Ction 7 MY3 148.00 13.36 200+	(Riffle MY4 148.11 14.79 200+	e) MY5	MY+	Base 147.20 15.10 200+	Cr MY1 147.17 15.24 200+	MY2 147.14 13.31 200+	ction 8 MY3 147.14 12.71 200+	MY4 147.17 13.72 200+	le) MY5 7	MY+	Base 146.97 18.48 200+	Cr MY1 147.08 20.67 200+	055 Se MY2 147.19 26.07 200+	Ction 9 MY3 147.03 17.43 200+	(Riffle MY4 147.06 17.45 200+	e) MY5	MY+	Base 145.87 14.02 103.50	Cr MY1 145.76 13.61 41.41	055 Se MY2 145.73 12.45 45.35	Ction 1 MY3 145.88 15.14 50+	MY4 MY4 145.95 14.99 50+	i e) MY5 M	VIY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft)	Base 148.61 16.39 200+ 0.89	Cr MY1 148.58 17.17 200+ 0.80	MY2 148.49 15.90 200+ 0.76	MY3 148.51 20.32 200+ 0.72	6 (Riffl MY4 148.55 15.38 200+ 0.88	e) MY5	MY+	Base 148.09 16.87 200+ 0.70	Cr MY1 148.13 15.72 200+ 0.77	MY2 148.06 14.91 200+ 0.73	MY3 148.00 13.36 200+ 0.75	(Riffle MY4 148.11 14.79 200+ 0.74	e) MY5	MY+	Base 147.20 15.10 200+ 0.72	Cr MY1 147.17 15.24 200+ 0.75	MY2 147.14 13.31 200+ 0.83	ction 8 MY3 147.14 12.71 200+ 0.72	MY4 147.17 13.72 200+ 0.69	le) MY5 7	MY+	Base 146.97 18.48 200+ 1.40	Cr MY1 147.08 20.67 200+ 1.41	MY2 147.19 26.07 200+ 1.13	ction 9 MY3 147.03 17.43 200+ 1.46	(Riffle MY4 147.06 17.45 200+ 1.45	e) MY5	MY+	Base 145.87 14.02 103.50 0.53	Cr MY1 145.76 13.61 41.41 0.59	0SS Se MY2 145.73 12.45 45.35 0.36	ction 1 MY3 145.88 15.14 50+ 0.52	MY4 145.95 145.95 50+ 0.53	ie) MY5 M 5	MY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft)	Base 148.61 16.39 200+ 0.89 1.23	Cr MY1 148.58 17.17 200+ 0.80 1.20	OSS Se MY2 148.49 15.90 200+ 0.76 1.14	Ction MY3 148.51 20.32 200+ 0.72 1.30	6 (Riffl MY4 148.55 15.38 200+ 0.88 1.25	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21	Cr MY1 148.13 15.72 200+ 0.77 1.27	MY2 148.06 14.91 200+ 0.73 1.21	MY3 148.00 13.36 200+ 0.75 1.29	(Riffle MY4 148.11 14.79 200+ 0.74 1.19	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26	CI MY1 147.17 15.24 200+ 0.75 1.34	MY2 147.14 13.31 200+ 0.83 1.22	ction 8 MY3 147.14 12.71 200+ 0.72 1.14	MY4 147.17 13.72 200+ 0.69 1.20	le) MY5 7	MY+	Base 146.97 18.48 200+ 1.40 2.27	Cr MY1 147.08 20.67 200+ 1.41 2.45	MY2 147.19 26.07 200+ 1.13 2.46	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43	(Riffle MY4 147.06 17.45 200+ 1.45 2.34	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98	Cr MY1 145.76 13.61 41.41 0.59 0.96	MY2 145.73 12.45 45.35 0.36 0.94	ction 1 MY3 145.88 15.14 50+ 0.52 0.98	MY4 MY4 145.95 14.99 50+ 0.53 0.94	ie) MY5 M 5	VIY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²)	Base 148.61 16.39 200+ 0.89 1.23 14.51	Cr MY1 148.58 17.17 200+ 0.80 1.20 13.74	055 Se MY2 148.49 15.90 200+ 0.76 1.14 12.05	MY3 148.51 20.32 200+ 0.72 1.30 14.64	6 (Riffl MY4 148.55 15.38 200+ 0.88 1.25 13.48	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21 11.77	Cr MY1 148.13 15.72 200+ 0.77 1.27 12.18	MY2 148.06 14.91 200+ 0.73 1.21 10.95	MY3 148.00 13.36 200+ 0.75 1.29 10.08	 (Riffle MY4 148.11 14.79 200+ 0.74 1.19 10.97 	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26 10.81	Ci MY1 147.17 15.24 200+ 0.75 1.34 11.37	MY2 147.14 13.31 200+ 0.83 1.22 11.08	ction 8 MY3 147.14 12.71 200+ 0.72 1.14 9.16	Riffl MY4 147.17 13.72 200+ 0.69 1.20 9.50	le) MY5 7	MY+	Base 146.97 18.48 200+ 1.40 2.27 25.96	Cr MY1 147.08 20.67 200+ 1.41 2.45 29.08	MY2 147.19 26.07 200+ 1.13 2.46 29.36	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43 25.48	(Riffle MY4 147.06 17.45 200+ 1.45 2.34 25.24	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98 7.41	Cr MY1 145.76 13.61 41.41 0.59 0.96 8.10	MY2 145.73 12.45 45.35 0.36 0.94 6.04	ction 1 MY3 145.88 15.14 50+ 0.52 0.98 7.82	MY4 145.95 14.99 50+ 0.53 0.94 7.98	MY5 M 6 6 7 7 8 7 9 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	MY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²) Bankfull Width/Depth Ratio	Base 148.61 16.39 200+ 0.89 1.23 14.51 18.42	Cr MY1 148.58 17.17 200+ 0.80 1.20 13.74 21.46	oss Se MY2 148.49 15.90 200+ 0.76 1.14 12.05 20.92	MY3 148.51 20.32 200+ 0.72 1.30 14.64 28.22	 Keiffl MY4 148.55 15.38 200+ 0.88 1.25 13.48 17.48 	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21 11.77 24.10	Ci MY1 148.13 15.72 200+ 0.77 1.27 12.18 20.42	MY2 148.06 14.91 200+ 0.73 1.21 10.95 20.42	MY3 148.00 13.36 200+ 0.75 1.29 10.08 17.81	 (Riffle MY4 148.11 148.12 147.9 200+ 0.74 1.19 10.97 19.99 	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26 10.81 20.97	CI MY1 147.17 15.24 200+ 0.75 1.34 11.37 20.32	MY2 147.14 13.31 200+ 0.83 1.22 11.08 16.04	Ction 8 MY3 147.14 12.71 200+ 0.72 1.14 9.16 17.65	Riffl MY4 147.17 13.72 200+ 0.69 1.20 9.50 19.88	le) MY5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MY+	Base 146.97 18.48 200+ 1.40 2.27 25.96 13.20	Cr MY1 147.08 20.67 200+ 1.41 2.45 29.08 14.66	MY2 147.19 26.07 200+ 1.13 2.46 29.36 23.07	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43 25.48 11.94	(Riffle MY4 147.06 17.45 200+ 1.45 2.34 25.24 12.03	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98 7.41 26.45	Cr MY1 145.76 13.61 41.41 0.59 0.96 8.10 23.07	MY2 145.73 12.45 45.35 0.36 0.94 6.04 34.58	ction 1 MY3 145.88 15.14 50+ 0.52 0.98 7.82 29.12	O (Riff MY4 145.95 145.95 145.95 0.53 0.94 7.98 28.28	MY5 N J J	MY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio	Base 148.61 16.39 200+ 0.89 1.23 14.51 18.42 12.20	Cr MY1 148.58 17.17 200+ 0.80 1.20 13.74 21.46 11.65	oss Se MY2 148.49 15.90 200+ 0.76 1.14 12.05 20.92 12.58	MY3 148.51 20.32 200+ 0.72 1.30 14.64 28.22 9.84	Keiffl MY4 148.55 15.38 200+ 0.88 1.25 13.48 17.48 13.00	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21 11.77 24.10 11.86	Ci MY1 148.13 15.72 200+ 0.77 1.27 12.18 20.42 12.72	MY2 148.06 14.91 200+ 0.73 1.21 10.95 20.42 13.41	MY3 148.00 13.36 200+ 0.75 1.29 10.08 17.81 14.97	 (Riffle MY4 148.11 148.11 14.79 200+ 0.74 1.19 10.97 19.99 13.52 	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26 10.81 20.97 13.25	Ci MY1 147.17 15.24 200+ 0.75 1.34 11.37 20.32 13.12	MY2 147.14 13.31 200+ 0.83 1.22 11.08 16.04 15.03	Ction 8 MY3 147.14 12.71 200+ 0.72 1.14 9.16 17.65 15.74	Riffl MY4 147.17 13.72 200+ 0.69 1.20 9.50 19.88 14.58	le) MY5 7 	MY+	Base 146.97 18.48 200+ 1.40 2.27 25.96 13.20 10.82	Cr MY1 147.08 20.67 200+ 1.41 2.45 29.08 14.66 9.68	MY2 147.19 26.07 200+ 1.13 2.46 29.36 23.07 7.67	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43 25.48 11.94 11.47	(Riffle MY4 147.06 17.45 200+ 1.45 2.34 25.24 12.03 11.45	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98 7.41 26.45 7.35	Cr MY1 145.76 13.61 41.41 0.59 0.96 8.10 23.07 3.04	MY2 145.73 12.45 45.35 0.36 0.94 6.04 34.58 3.64	ction 1 MY3 145.88 15.14 50+ 0.52 0.98 7.82 29.12 3.30	O (Riff MY4 145.95 14.99 50+ 0.53 0.94 7.98 28.28 3.34	MY5 M M	MY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio	Base 148.61 16.39 200+ 0.89 1.23 14.51 18.42 12.20 1.00	Cr MY1 148.58 17.17 200+ 0.80 1.20 13.74 21.46 11.65 1.00	oss Se MY2 148.49 15.90 200+ 0.76 1.14 12.05 20.92 12.58 1.00	MY3 148.51 20.32 200+ 0.72 1.30 14.64 28.22 9.84 1.00	Keiffl MY4 148.55 15.38 200+ 0.88 1.25 13.48 17.48 13.00 1.00	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21 11.77 24.10 11.86 1.00	CI MY1 148.13 15.72 200+ 0.77 1.27 12.18 20.42 12.72 1.00	MY2 148.06 14.91 200+ 0.73 1.21 10.95 20.42 13.41 1.00	MY3 148.00 13.36 200+ 0.75 1.29 10.08 17.81 14.97 1.00	Riffle MY4 148.11 148.12 200+ 0.74 1.19 10.97 19.99 13.52 1.00	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26 10.81 20.97 13.25 1.00	Ci MY1 147.17 15.24 200+ 0.75 1.34 11.37 20.32 13.12 1.00	MY2 147.14 13.31 200+ 0.83 1.22 11.08 16.04 15.03 1.00	ction 8 MY3 147.14 12.71 200+ 0.72 1.14 9.16 17.65 15.74 1.00	Riff MY4 147.17 13.72 200+ 0.69 1.20 9.50 19.88 14.58 1.00	le) MY5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MY+	Base 146.97 18.48 200+ 1.40 2.27 25.96 13.20 10.82 1.00	Cr MY1 147.08 20.67 200+ 1.41 2.45 29.08 14.66 9.68 1.00	MY2 147.19 26.07 200+ 1.13 2.46 29.36 23.07 7.67 1.00	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43 25.48 11.94 11.47 1.00	(Riffle MY4 147.06 17.45 200+ 1.45 2.34 25.24 12.03 11.45 1.00	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98 7.41 26.45 7.35 1.00	Cr MY1 145.76 13.61 41.41 0.59 0.96 8.10 23.07 3.04 1.00	MY2 145.73 12.45 45.35 0.36 0.94 6.04 34.58 3.64	ction 1 MY3 145.88 15.14 50+ 0.52 0.98 7.82 29.12 3.30 1.00	O (Riff MY4 145.95 145.95 50+ 0.53 0.94 7.98 28.28 3.34 1.00	MY5 M MY5 M M M	MY+
Based on fixed baseline bankfull elevation ¹ Record elevation (datum) used Bankfull Width (ft) Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft ²) Bankfull Width/Depth Ratio Bankfull Entrenchment Ratio Bankfull Bank Height Ratio Cross Sectional Area between end pins (ft ²)	Base 148.61 16.39 200+ 0.89 1.23 14.51 18.42 12.20 1.00 24.30	Cr MY1 148.58 17.17 200+ 0.80 1.20 13.74 21.46 11.65 1.00 24.50	oss Se MY2 148.49 15.90 200+ 0.76 1.14 12.05 20.92 12.58 1.00 24.00	Ction (MY3 148.51 20.32 200+ 0.72 1.30 14.64 28.22 9.84 1.00	Key MY4 148.55 15.38 200+ 0.88 1.25 13.48 17.48 13.00 1.00	e) MY5	MY+	Base 148.09 16.87 200+ 0.70 1.21 11.77 24.10 11.86 1.00 13.10	Ci MY1 148.13 15.72 200+ 0.77 1.27 12.18 20.42 12.72 1.00 13.40	MY2 148.06 14.91 200+ 0.73 1.21 10.95 20.42 13.41 1.00 13.25	MY3 148.00 13.36 200+ 0.75 1.29 10.08 17.81 14.97 1.00	(Riffle MY4 148.11 14.79 200+ 0.74 1.19 10.97 19.99 13.52 1.00	e) MY5	MY+	Base 147.20 15.10 200+ 0.72 1.26 10.81 20.97 13.25 1.00 17.20	Ci MY1 147.17 15.24 200+ 0.75 1.34 11.37 20.32 13.12 1.00 17.60	oss Se MY2 147.14 13.31 200+ 0.83 1.22 11.08 16.04 15.03 1.00 16.85	ction 8 MY3 147.14 12.71 200+ 0.72 1.14 9.16 17.65 15.74 1.00	Riffl MY4 147.17 13.72 200+ 0.69 1.20 9.50 19.88 14.58 1.00	MY5 7 -	MY+	Base 146.97 18.48 200+ 2.27 25.96 13.20 10.82 1.00 40.10	Cr MY1 147.08 20.67 200+ 1.41 2.45 29.08 14.66 9.68 1.00 42.10	MY2 147.19 26.07 200+ 1.13 2.46 29.36 23.07 7.67 1.00 43.65	Ction 9 MY3 147.03 17.43 200+ 1.46 2.43 25.48 11.94 1.47 1.00	(Riffle MY4 147.06 17.45 200+ 1.45 2.34 25.24 12.03 11.45 1.00	e) MY5	MY+	Base 145.87 14.02 103.50 0.53 0.98 7.41 26.45 7.35 1.00 85.50	Cr MY1 145.76 13.61 41.41 0.59 0.96 8.10 23.07 3.04 1.00 86.10	MY2 145.73 12.45 45.35 0.36 0.94 6.04 34.58 3.64 1.00	ction 1 MY3 145.88 15.14 50+ 0.52 0.98 7.82 29.12 3.30 1.00	O (Riff MY4 145.95 145.95 50+ 0.53 0.94 7.98 28.28 3.34 1.00	MY5 M MY5	MY+

Table 11a Monitoring Data Dir cia nhala . . cior Cr Sections) +-

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

Exhibit Table 11b. Monitoring Data - Stream Reach Data Summary																																			
										UT to	Jumpi	ing Rι	in Cre	ek/EEF	P No. 9	2345 -	UT1b	(366′	1 feet)																
Parameter			Bas	eline					M	/-1*					MY	′-2*					MY-	3**					MY- 4	4***					MY- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med Max	SD ⁴	n
Bankfull Width (ft) 14.02	15.983	15.75	18.48	1.3206	8	14.02	15.983	15.75	19	1.32	8	12.45	15.76	14.955	26.07	4.361	8	12.22	15.51	15.52	20.32	2.74	8	13.72	15.20	14.91	17.45	1.1	8					1
Floodprone Width (ft) 103.5	187.94	200	200	34.118	8	103.5	187.94	200	200	34.12	8	45.35	177.91	200	200	58.452	8	50+	181.3	200+	200+	53	8	50+	181.3.	200+	200+	53	8	1				1
Bankfull Mean Depth (ft	0.53	0.8213	0.75	1.4	0.2563	8	0.53	0	0.75	1.4	0.26	8	0.36	0.7814	0.815	149.87	0.2277	8	0.52	0.80	0.74	1.46	0.28	8	0.53	0.82	0.76	1.45	0.28	8					
¹ Bankfull Max Depth (ft	0.98	1.3513	1.245	2.27	0.3918	8	0.98	0.83	1.27	2.28	0.39	8	0.94	1.3757	1.26	149.93	0.4964	8	0.98	1.40	1.30	2.43	0.45	8	0.94	1.34	1.25	2.34	0.42	8					
Bankfull Cross Sectional Area (ft ²	7.41	13.345	11.74	25.96	5.4803	8	7.41	13.345	11.74	25.96	5.49	8	6.04	13.293	11.565	148.73	7.3972	8	7.82	12.51	10.17	25.48	5.66	8	7.98	12.67	11.55	25.24	5.38	8	1				
Width/Depth Ratio	13.2	20.533	20.935	26.45	3.9725	8	13.2	20.533	20.935	26.45	3.96	8	14.93	21.352	20.673	149.75	6.4807	8	11.94	20.95	20.23	29.12	6.41	8	12.03	19.76	19.94	28.28	4.63	8	1				
Entrenchment Ratio	7.35	12.854	12.53	21.58	4.0027	8	7.36	13	12.6	21.58	4.00	8	3.6426	11.533	13.117	149.86	4.3207	8	3.30	12.01	12.18	16.37	4.19	8	3.34	11.96	13.25	14.58	3.6	8	1				
¹ Bank Height Ratio	o 1	1	1	1	0	8	1	1	1	1	0.00	8	1	1	1	1	0	8	1.00	1.00	1.00	1.00	0.00	8	1.00	1.00	1.00	1.00	0	8					
Profile	-					•					•																								
Riffle Length (ft	31.399	49.709	48.083	78.458	11.125	32	31.399	49.8	48.083	78.458	11.12	32	30	50	48	79	11.26	32	2.54	31.89	30.575	68.68	17.5	26	14.58	48.84	55.65	68.9	17.1	14					
Riffle Slope (ft/ft	0.0002	0.4671	0.0050	6.0000	1.6624	13	0.0002	0.4671	0.0050	6.0000	1.6624	13	0.0002	0.4623	0.0048	5.5200	1.7500	13	0.0003	0.0017	0.0017	0.0059	0.001	19	0.001	0.003	0.002	0.01	0.002	14					
Pool Length (ft) 27.7	59.89	61.4	96	18.339	30	27.7	59.89	61.4	96	18.34	30	28.1	58.7	60.4	94.3	18.14	30	12.53	32.33	32.915	55.6	11	34	20.9	44.96	45.67	65.7	14.9	15					
Pool Max depth (ft	0.87	1.50	1.57	2.40	0.39	30	0.87	1.60	1.59	2.60	0.39	30	0.90	1.64	1.58	2.77	0.41	30	1.7	2.148	2.04	3.39	0.37	35	1.68	2.30	2.30	3.42	0.40	35					
Pool Spacing (ft) 79	106.48	104	143	17.089	29	79	106.48	104	143	17.09	29	78.4	105.8	104.7	144.2	17.18	29	77.33	107	103.7	161.69	20	32	75.27	107.4	103.9	143	18.8	31				_	<u> </u>
Pattern	1	T	I	T	T	1		-															$ \downarrow \downarrow$											_	4
Channel Beltwidth (ft	40.15	70.418	69.349	96.958	3 13.679	26			<u> </u>								<u> </u>					<u> </u>									-			-	4
Radius of Curvature (ft	32.491	41.465	39.95	2 0 2 2 2	6.3477	30									<u> </u>	Patte	h data wil	not typ	ically be	collected	l unless v	isual data	, dimen	sional	lata or p	rofile da	ta indica	te			-			-	4
Rc.Balikiuli Width (It/It	152 37	7 170.99	2.5505	228 52	23 / 35	-												,,	,	signif	icant shil	ts from be	seline											-	4
Meander Width Ratio	2.8638	4.406	4.4031	5.2466	-	-																													
	2.0000			012 100	· 1																														
Additional Reach Parameters																																			
Rosgen Classification	ı		(C5					(5					С	5					C	5					C5	5							
Channel Thalweg length (ft)		34	471					34	71					34	71					347	71					347	' 1							
Sinuosity (ft)		1	.2					1	.2					1.	.2					1.:	2					1.2	2							
Water Surface Slope (Channel) (ft/ft)		0.0	0124					0.0	0126					0.00	126					0.00	126					0.001	113							
BF slope (ft/ft)	1	0.0	0137	1		<u> </u>		0.0	0137	1		<u> </u>	1	0.00	137	1				0.00)14			<u> </u>		0.001	134			<u> </u>	-		1	
³ Ri% / Ru% / P% / G% / S%	52	0	48	0	0		52	0	48	0	0		52	0	48	0	0		52	0	48	0	0		52	0	48	0	0		<u> </u>				+
³ SC% / Sa% / G% / C% / B% / Be%																																			-
³ d16 / d35 / d50 / d84 / d95	/																																		
² % of Reach with Eroding Banks	6			-			<u> </u>			-			<u> </u>		-						-														
Channel Stability or Habitat Metric	×			-			I			-			I		-				 		-				<u> </u>										
Biological or Othe	r h ho filler i	in		-						-			I			-			I		-														

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile
 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
 4. = Of value/needed only if the n exceeds 3
 *Low flow as a result of dry conditions. Water surface data was insufficient.
 **Recent rainfall resulted in high stream flow causing high water surface data.

***Beaver Dam downstream in woods resulted in exagerated water surface in lower section. Remnant dam upstream resulted in exagerated elevations upstream.						

This page intentionally left blank for two-sided printing.

Appendix E. Hydrology Data

Table 12	- Verification of Bankfull Events
Figure 5	– Monthly Rainfall Data
Figures 6a-p	- Precipitation and Water Level Plots
Table 13	– Wetland Hydrology Criteria Attainment

This page intentionally left blank for two-sided printing.

Tabl	e 12 - Verification of Bankf	ull Events											
UT to Jumping Run Creek Stream and Wetland Restoration Project - EEP Project No. 92345													
Date of Data Collection	Date of Occurrence	Method	Photo										
9/4/2013	Unknown	Crest Gauge 1 and Sediment on Vegetation	E1 and E2										

E1 - Crest gauge 1 with cork observed above the bankfull line

 $\mathrm{E2}-\mathrm{Water}$ stained vegetation in the vicinity of crest gauge 1

UT to Jumping Run Creek 2013 30-70 Percentile Graph Cumberland County, North Carolina

2013 Groundwater Data Well UTJRC-1 (SN: 13D4CF6A) Old Well SN: 000009BEBD4E Replaced 9/18/2013

2013 Groundwater Data Well UTJRC-2 (SN: 00000B651828)

2013 Groundwater Data Well UTJRC-3 (SN: 000009DE7442)

2013 Groundwater Data Well UTJRC-4 (SN: 000011313B9E)

Date

2013 Groundwater Data Well UTJRC-4A (SN: 00000EBD3CA9)* *Old Well SN: 000009BEA426 Replaced 9/4/2013

2013 Groundwater Data Well UTJRC-5 (SN: 00000B6522F0)

2012 Groundwater Data Well UTJRC-6 (SN: 0000138BBE22)

2013 Groundwater Data Well UTJRC-6A (SN: EBDBABC)

2013 Groundwater Data Well UTJRC-6B* (SN: EBDC7A3) *Well Replaced 3/26/13 Old Well SN: EBD2B2A

2013 Groundwater Data Well UTJRC-6C (SN: 13D4A9E0)

2013 Groundwater Data Well UTJRC-7 (SN: 000013D47E84)

2013 Groundwater Data Well UTJRC-8 (SN: 0000138B8501)

2013 Groundwater Data Well UTJRC-9* (SN: 000013D4B0AE) *Well Replaced 9/18/2013 Old Well SN: 00000AB3548B

2013 Groundwater Data Well UTJRC-10* (SN: 000009BEBF4C) *Well Replaced 8/8/2013 Old Well SN: 000009BEBDBF

2013 Groundwater Data Well UTJRC-11 (SN: 000013D49A64)

2013 Groundwater Data Well UTJRC-12* (SN: 00009BEAC50) *Well Replaced on 6/26/2013 Old Well SN: 00009BEBCFA

2013 Groundwater Data Well UTJRC-13* (SN: 000009BEBD37) *Well Replaced on 6/25/2013 Old Well SN: 00000EBD86CF

2013 Groundwater Data Well UTJRC-14 (SN: 000013D4BBED)

2013 Groundwater Data Well UTJRC-15 (SN: 0000138BAA9D)

2013 Groundwater Data Well JR-Ref (SN: 00000EBD962F)

	с	Table 13. W	etland Gauge Att	ainment Data		
UT to Jumping F	Run Creek R	lestoration Proje	ect / EEP Project	No. 92345 Sum	mary of Groundy	water Results
Wotland Type	Cauga	Success Crit	eria Achieved/Ma	ax Consecutive I	Days During Gro	wing Season
wettand Type	Gauge	Year 1 (2010)	Year 2 (2011)	Year 3 (2012)	Year 4 (2013)	Year 5 (2014)
	GW1	Yes/31 days	Yes/90 days	Yes/42 days	Yes/101 days	
Riparian	Gwi	(12 percent)	(35 percent)	(16 percent)	(39 percent)	
	CW/2	Yes/44 days	Yes/101 days	Yes/37 days	Yes/98 days (38	
Riparian	Gw 2	(17 percent)	(39 percent)	(14 percent)	percent)	
	CW/2	Yes/140 days	Yes/92 days	Yes/124 days	Yes/195 days	
Riparian	0.07	(54 percent)	(36 percent)	(48 percent)	(75 percent)	
	CWA	No	No/0 days	No/0 days	Yes/ 45 days	
Non-Riparian	0114				(17 percent)	
	CWIAA	n/a	n/a	n/a	Yes/45 days (17	
Non-Riparian	Gw 4A				percent)	
	CW15	Yes/63 days	Yes/89 days	Yes/119 days	Yes/195 days	
Riparian	Gw 5	(24 percent)	(35 percent)	(46 percent)	(75 percent)	
	CWG	No	No/0 days	No/0 days	Yes/29 days (11	
Riparian	Gwo				percent)	
	CW/6A	n/a	n/a	n/a	Yes/195 days	
Riparian	UWOA				(75 percent)	
	CWGP	n/a	n/a	n/a	No/4 days	
Riparian	OW OB				(2 percent)	
	GW6C	n/a	n/a	n/a	Yes/96 days (37	
Riparian	GWOC				percent)	
	CW7	Yes/63 days	Yes/44 days	No/19 days	Yes/195 days	
Non-Riparian	Gw /	(24 percent)	(17 percent)	(7 percent)	(75 percent)	
	CWR	Yes/63 days	Yes/92 days	Yes/136 days	Yes/195 days	
Riparian	Uw o	(24 percent)	(36 percent)	(53 percent)	(75 percent)	
	GWO	Yes/141 days	Yes/ 112 days	Yes/197 days	Yes/37 days (14	
Riparian	Uw 3	(55 percent)	(43%)	(76 percent)	percent)	
	GW10	Yes/62 days	Yes/80 days	Yes/78 days	Yes/195 days	
Non-Riparian	00010	(24 percent)	(31 percent)	(30 percent)	(75 percent)	
	GW11	Yes/54 days	Yes/79 days	Yes/80 days	Yes/191 days	
Riparian	Uw II	(21 percent)	(31 percent)	(31 percent)	(74 percent)	
	GW12	Yes/147days	Yes/ 121 days	Yes/258 days	Yes/195 days	
Riparian	Gw 12	(57 percent)	(47%)	(100 percent)	(75 percent)	
	GW13	Yes/45 days	Yes/ 47 days	No/12 days	Yes/104 days	
Non-Riparian	Gw 15	(17 percent)	(18%)	(5 percent)	(40 percent)	
	GW14	Yes/44 days	Yes/ 88 days	Yes/121 days	Yes/195 days	
Riparian	0114	(17 percent)	(34%)	(47 percent)	(75 percent)	
	GW15	Yes/73 days	Yes/87 days	Yes/136 days	Yes/231 days	
Riparian	00015	(28 percent)	(34 percent)	(53 percent)	(89 percent)	
	Deference	Yes/63 days	Yes/78 days	Yes/40 days	Yes/195 days	
na	Reference	(24 percent)	(30 percent)	(15 percent)	(75 percent)	